Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIPT-based researcher predicts new state of matter

Abstract:
A researcher with the Department of Electrodynamics of Complex Systems and Nanophotonics, Alexander Rozhkov, has presented theoretical calculations which indicate the possible existence of fermionic matter in apreviously unknown state - in the form ofaone-dimensional liquid, which cannot be described within the framework of existing models. Details are contained in Rozhkov's article in the journal Physical Review Letters, and are also available as a preprint at www.arxiv.org.

MIPT-based researcher predicts new state of matter

Moscow, Russia | Posted on June 17th, 2014

Rozhkov explained that the one-dimensional liquid state of matter is not necessarily one that can be observed with the naked eye on a macroscopic scale. The term "liquid" should be understood broadly, he said; it applies to models describing multi-particle systems with inter-particle interaction. Such models can be described as quite ordinary objects such as electrons in conductors and more sophisticated objects,such as nanotubes, nanowires or graphene sheets.

"Currently there are two general models of fermionic matter, namely fermionic liquid (for three- and two-dimensional spaces) and Tomonaga-Luttinger liquid (for one-dimensional space)," Rozhkov said. "I showed that it is possible to produce yet another state of one-dimensional matter adjusting certain interactions. This state is similar to both of these models, but cannot be reduced to either. I suggested calling it aquasi-fermionic liquid."

As follows from the proposed name, the newly found matter consists of fermions, which are particles with half-integer spin. (Spin is the quantum characteristic of a particle, while half-integer is an integer plus one-half.) According to the laws of quantum mechanics, the behavior of substances consisting of fermions differs from that of matter consisting of bosons, which are particles with integer spin.

The difference between Bose and fermionic liquids can be illustrated with the example of liquid helium: the atom of a helium-4 isotope has a Bose nucleus, and forms of Bose liquid that undergoes Bose condensation at temperatures below 2.17 Kelvin. A Bose-condensed liquid exhibits superfluidity, for example, it can flow through any crack without meeting any resistance. Helium-3 has a fermion nucleus, and therefore forms afermionic liquid. To turn helium-3 into a superfluid one needs to cool it to 0.0025 Kelvin.

Rozhkov also noted that at low temperatures and in high magnetic fields, fermions begin to behave as if they had no spin, which simplifies their modeling, allowing a researcher to maintain sufficient accuracy.

Preliminary estimates show that the new one-dimensional liquid statecan be obtained using atoms cooled to very low temperatures in magnetic traps. However, it is still too early to consider the practical application of such a system, according to Rozhkov.

"In almost any contemporary paper, both theoretical and experimental, researchers describe the practical application of their discovery, but at this stage I would not hopetoo much for any practical application," Rozhkov said. "I found an exotic mutant different from anything currently known. And whether this can be applied in practice remains to be seen. At this moment I don't think so," said Rozhkov.

Rozhkov added that the group of researchers he works with is also looking into other low-dimensional and multi-particle systems. For example, new results were recently obtained on the possible anti-ferromagnetism in two-layer graphene-AA, and a new description for quantum dots of superconducting material was drafted.

MIPT's press service would like to thank Dr. Alexander Rozhkov for his generous help in writing this article.

####

For more information, please click here

Contacts:
Alexandra O. Borissova

7-495-408-6445

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Graphene/ Graphite

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

Physics

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Announcements

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Quantum Dots/Rods

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project