Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Researchers Make Smart Nanocarriers to Reduce Side Effects of Anticancer Drugs

Abstract:
Iranian researchers from Tarbiat Modarres University succeeded in the production of a smart nanocarrier that can be used in medical industries, pharmaceutics, and specially in cancer treatment.

Iranian Researchers Make Smart Nanocarriers to Reduce Side Effects of Anticancer Drugs

Tehran, Iran | Posted on June 11th, 2014

The nanocarrier has polymeric structure and reduces the amount of the consumed drug as well as its side effects.

Methotrexate (MTX) is one of the most common and effective anticancer drugs in chemotherapy, which is widely used in the treatment of various types of aggressive tumors such as leukemia, lung cancer, ovarian cancer, colon cancer, and other cancers. Conductive polymers are among the most important intelligent materials that in addition to compatibility, they provide the possibility of controlled release of the drugs by using an external electrochemical agent. However, there are some problems in the loading of anticancer drugs in these polymers such as low efficiency or the low stability of the polymer.

In this research, methotrexate has been loaded in the structure of nanostructured polypyrrole as the conductive intelligent polymer through a simple method, and the parameters effective on the release of the drug were studied. Electrical polymerization of polypyrrole in the presence of MTX solely results in a very low quality and instable polymer with very low amount of loaded drug. However, the problem is solved in the presence of cationic surfactant of cetylpyridinium (CP), and the amount of loaded drug increases significantly. On the other hand, the size and structure of the nanocarrier can be controlled by adjusting the temperature and pH value of the media, and the time and amount of the imposed potential.

The results showed that the correlation of the performance kinetics of the nanocarrier is in good agreement with Avrami Equation, and the amount of drug release can be controlled by changing the temperature and potential.

Results of the research have been published in Electrochimica Acta, vol. 130, issue 1, April 2014, pp. 488-496.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Nanomedicine

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Bloodless revolution in diabetes monitoring: Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test April 10th, 2018

Discoveries

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project