Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotubes boost terahertz detectors: Rice-led project may dramatically improve medical imaging, passenger screening, food inspection

A thin-film terahertz detector created with carbon nanotubes (the thin strip of black material) may revolutionize medical imaging, passenger screening and food inspection, among other uses, according to researchers at Rice University and Sandia National Laboratories.Credit: Sandia National Laboratories
A thin-film terahertz detector created with carbon nanotubes (the thin strip of black material) may revolutionize medical imaging, passenger screening and food inspection, among other uses, according to researchers at Rice University and Sandia National Laboratories.

Credit: Sandia National Laboratories

Abstract:
Researchers at Rice University, Sandia National Laboratories and the Tokyo Institute of Technology have developed novel terahertz detectors based on carbon nanotubes that could improve medical imaging, airport passenger screening, food inspection and other applications.

Nanotubes boost terahertz detectors: Rice-led project may dramatically improve medical imaging, passenger screening, food inspection

Houston, TX | Posted on June 11th, 2014

Unlike current terahertz detectors, the devices are flexible, sensitive to polarization and broad bandwidth and feature large detection areas. They operate at room temperature without requiring any power.

The project led by Rice physicist Junichiro Kono and Sandia scientist François Léonard takes advantage of the terahertz range of the electromagnetic spectrum.

Because terahertz waves are much smaller in energy than visible light, finding materials that absorb and turn them into useful electronic signals has been a challenge, Kono said. Now, thin films of highly aligned carbon nanotubes developed at Rice have been configured to act as compact, flexible terahertz sensors.

The research was reported in the American Chemical Society journal Nano Letters.

Kono said terahertz waves easily penetrate fabric and other materials and may provide less intrusive ways for security screenings of people and cargo. Terahertz imaging could also be used to inspect food without adversely impacting its quality.

Perhaps the most exciting application offered by terahertz technology, he said, is as a possible replacement for magnetic resonance imaging (MRI) technology in screening for cancer and other diseases.

"The potential improvements in size, ease, cost and mobility of a terahertz-based detector are phenomenal," Kono said. "With this technology, you could conceivably design a handheld terahertz detection camera that images tumors in real time with pinpoint accuracy. And it could be done without the intimidating nature of MRI technology."

The scientific community has long been interested in the terahertz properties of carbon nanotubes, Léonard said, but virtually all of the research to date has been theoretical or computer-model-based. A handful of papers, including several by Kono and his Rice team, have investigated terahertz phenomena in carbon nanotubes, but those have focused mainly on the use of one or a bundle of nanotubes.

The problem, Léonard said, is that terahertz radiation typically requires an antenna to achieve coupling into a single nanotube, due to the relatively large size of terahertz waves. The researchers, however, found a way to create a small detector that is visible to the naked eye. The thin carbon nanotube film developed by Rice chemist Robert Hauge and the paper's lead author, Rice graduate student Xiaowei He, does not require an antenna, and is thus amenable to simple fabrication. It represents one of the team's most important achievements, Léonard said.

"Carbon nanotube thin films are extremely good absorbers of electromagnetic light," he explained. In the terahertz range, the film, a mix of metallic and semiconducting nanotubes, soaks up all of the incoming terahertz radiation.

"Trying to do that with a different kind of material would be nearly impossible, since a semiconductor and a metal couldn't coexist at the nanoscale at high density," Kono said. "But that's what we've achieved with the carbon nanotubes."

The technique is key, he said, because it combines the superb terahertz absorption properties of metallic nanotubes and the unique electronic properties of semiconducting nanotubes. This allowed the researchers to create a photo detector that does not require power to operate, with performance comparable to existing technology.

The 150-micron-wide, 2-millimeter-long films of aligned carbon nanotubes were grown by He from 2-micron-wide lines of catalyst. The resulting film was doped to create a positive/negative junction and attached to Teflon backing and gold electrodes for testing. "The structure is very compact and combines the absorber, the thermometer and polarizer that terahertz detectors require into one piece of film," He said.

Next, the researchers need to integrate an independent terahertz radiation generator with the detector for applications that require a source, Léonard said. The team also needs to incorporate electronics into the system and to further improve properties of the carbon nanotube material.

The project's contributors included researchers taking part in NanoJapan, a 12-week summer program that enables freshman and sophomore physics and engineering students from U.S. universities to complete nanoscience research internships in Japan. NanoJapan is funded by the National Science Foundation through the TeraNano collaboration based at Rice and Tokyo Tech. Such research collaborations and international outreach are among Rice's Priorities for the New Century.

"A hallmark of this international research collaboration is the emphasis it places on training the next generation of terahertz nanoscience researchers," Kono said. "NanoJapan tightly integrates the international experience with students' academic programs by providing hands-on opportunities to acquire technical skills and knowledge associated with cutting-edge nanoscience and optics research projects."

Co-authors are Rice graduate students Qi Zhang, Weilu Gao and undergradute Qijia Jiang; Naoki Fujimura and Yukio Kawano of the Tokyo Institute of Technology; NanoJapan participant Meagan Lloyd of Carnegie Mellon University; Kristopher Erickson and Alec Talin of Sandia National Laboratories; and Hauge, a distinguished faculty fellow in chemistry at Rice. Kono is a professor of electrical and computer engineering and of physics and astronomy.

The Department of Energy, the National Institute for Nano Engineering at Sandia National Laboratories, the Lockheed-Martin Rice University LANCER program, the National Science Foundation and the Robert A. Welch Foundation funded the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Laboratories

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Imaging

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

World's smallest spirals could guard against identity theft June 4th, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors April 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Nanomedicine

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Discoveries

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Homeland Security

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Food/Agriculture/Supplements

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Bacteria Cellulose, Natural Polymers with Applications in Various Industries Synthesized in Iran June 22nd, 2015

High-tech nanofibres could help nutrients in food hit the spot June 17th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project