Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotubes boost terahertz detectors: Rice-led project may dramatically improve medical imaging, passenger screening, food inspection

A thin-film terahertz detector created with carbon nanotubes (the thin strip of black material) may revolutionize medical imaging, passenger screening and food inspection, among other uses, according to researchers at Rice University and Sandia National Laboratories.Credit: Sandia National Laboratories
A thin-film terahertz detector created with carbon nanotubes (the thin strip of black material) may revolutionize medical imaging, passenger screening and food inspection, among other uses, according to researchers at Rice University and Sandia National Laboratories.

Credit: Sandia National Laboratories

Abstract:
Researchers at Rice University, Sandia National Laboratories and the Tokyo Institute of Technology have developed novel terahertz detectors based on carbon nanotubes that could improve medical imaging, airport passenger screening, food inspection and other applications.

Nanotubes boost terahertz detectors: Rice-led project may dramatically improve medical imaging, passenger screening, food inspection

Houston, TX | Posted on June 11th, 2014

Unlike current terahertz detectors, the devices are flexible, sensitive to polarization and broad bandwidth and feature large detection areas. They operate at room temperature without requiring any power.

The project led by Rice physicist Junichiro Kono and Sandia scientist François Léonard takes advantage of the terahertz range of the electromagnetic spectrum.

Because terahertz waves are much smaller in energy than visible light, finding materials that absorb and turn them into useful electronic signals has been a challenge, Kono said. Now, thin films of highly aligned carbon nanotubes developed at Rice have been configured to act as compact, flexible terahertz sensors.

The research was reported in the American Chemical Society journal Nano Letters.

Kono said terahertz waves easily penetrate fabric and other materials and may provide less intrusive ways for security screenings of people and cargo. Terahertz imaging could also be used to inspect food without adversely impacting its quality.

Perhaps the most exciting application offered by terahertz technology, he said, is as a possible replacement for magnetic resonance imaging (MRI) technology in screening for cancer and other diseases.

"The potential improvements in size, ease, cost and mobility of a terahertz-based detector are phenomenal," Kono said. "With this technology, you could conceivably design a handheld terahertz detection camera that images tumors in real time with pinpoint accuracy. And it could be done without the intimidating nature of MRI technology."

The scientific community has long been interested in the terahertz properties of carbon nanotubes, Léonard said, but virtually all of the research to date has been theoretical or computer-model-based. A handful of papers, including several by Kono and his Rice team, have investigated terahertz phenomena in carbon nanotubes, but those have focused mainly on the use of one or a bundle of nanotubes.

The problem, Léonard said, is that terahertz radiation typically requires an antenna to achieve coupling into a single nanotube, due to the relatively large size of terahertz waves. The researchers, however, found a way to create a small detector that is visible to the naked eye. The thin carbon nanotube film developed by Rice chemist Robert Hauge and the paper's lead author, Rice graduate student Xiaowei He, does not require an antenna, and is thus amenable to simple fabrication. It represents one of the team's most important achievements, Léonard said.

"Carbon nanotube thin films are extremely good absorbers of electromagnetic light," he explained. In the terahertz range, the film, a mix of metallic and semiconducting nanotubes, soaks up all of the incoming terahertz radiation.

"Trying to do that with a different kind of material would be nearly impossible, since a semiconductor and a metal couldn't coexist at the nanoscale at high density," Kono said. "But that's what we've achieved with the carbon nanotubes."

The technique is key, he said, because it combines the superb terahertz absorption properties of metallic nanotubes and the unique electronic properties of semiconducting nanotubes. This allowed the researchers to create a photo detector that does not require power to operate, with performance comparable to existing technology.

The 150-micron-wide, 2-millimeter-long films of aligned carbon nanotubes were grown by He from 2-micron-wide lines of catalyst. The resulting film was doped to create a positive/negative junction and attached to Teflon backing and gold electrodes for testing. "The structure is very compact and combines the absorber, the thermometer and polarizer that terahertz detectors require into one piece of film," He said.

Next, the researchers need to integrate an independent terahertz radiation generator with the detector for applications that require a source, Léonard said. The team also needs to incorporate electronics into the system and to further improve properties of the carbon nanotube material.

The project's contributors included researchers taking part in NanoJapan, a 12-week summer program that enables freshman and sophomore physics and engineering students from U.S. universities to complete nanoscience research internships in Japan. NanoJapan is funded by the National Science Foundation through the TeraNano collaboration based at Rice and Tokyo Tech. Such research collaborations and international outreach are among Rice's Priorities for the New Century.

"A hallmark of this international research collaboration is the emphasis it places on training the next generation of terahertz nanoscience researchers," Kono said. "NanoJapan tightly integrates the international experience with students' academic programs by providing hands-on opportunities to acquire technical skills and knowledge associated with cutting-edge nanoscience and optics research projects."

Co-authors are Rice graduate students Qi Zhang, Weilu Gao and undergradute Qijia Jiang; Naoki Fujimura and Yukio Kawano of the Tokyo Institute of Technology; NanoJapan participant Meagan Lloyd of Carnegie Mellon University; Kristopher Erickson and Alec Talin of Sandia National Laboratories; and Hauge, a distinguished faculty fellow in chemistry at Rice. Kono is a professor of electrical and computer engineering and of physics and astronomy.

The Department of Energy, the National Institute for Nano Engineering at Sandia National Laboratories, the Lockheed-Martin Rice University LANCER program, the National Science Foundation and the Robert A. Welch Foundation funded the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Laboratories

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

News laser design offers more inexpensive multi-color output: Design can control color, intensity of light by varying cavity architecture July 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Imaging

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication February 1st, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanomedicine

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Discoveries

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Announcements

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

Food/Agriculture/Supplements

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project