Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > GMZ Energy Announces Successful Testing of a 200 Watt High Temperature Thermoelectric Generator: 200 Watt TEG is a building block for a 1,000 Watt TEG the company is creating for the TARDEC & DOE to improve fuel efficiency in military and civilian vehicles

Abstract:
GMZ Energy, a leading provider of advanced nano-structured, high-temperature thermoelectric generation ("TEG") power solutions, today announced the successful demonstration of a TEG designed for automotive waste heat recapture. The unit generated an output power well in excess of its 200 watt design goal. GMZ Energy built the TEG as a part of an ongoing vehicle efficiency research program sponsored by the U.S. Army Tank Automotive Research, Development and Engineering Center ("TARDEC") and administered by the Department of Energy ("DOE").

GMZ Energy Announces Successful Testing of a 200 Watt High Temperature Thermoelectric Generator: 200 Watt TEG is a building block for a 1,000 Watt TEG the company is creating for the TARDEC & DOE to improve fuel efficiency in military and civilian vehicles

Waltham, MA | Posted on June 11th, 2014

The goal of the TARDEC TEG program is to develop a thermoelectric solution that directly converts exhaust waste heat into electrical energy in order to increase fuel efficiency by reducing the load on the alternator. The project also aims to reduce thermal signature and muffle engine noise, all while minimizing exhaust pressure drop. There are no moving parts in the solid-state design of GMZ Energy's TEG, which enables the very high reliability, mechanical robustness and silent operation necessary for military applications. With total delivered fuel costs on the battlefield in excess of $40 per gallon, the United States Military is extremely interested in pursuing this economical fuel efficiency solution across a broad range of applications and will first test GMZ Energy's TEG in a Bradley Fighting Vehicle.

Cheryl A. Diuguid, CEO of GMZ Energy, said: "We are pleased to announce the success of our high temperature 200 watt thermoelectric generator. This is a crucial step towards improving fuel efficiency and decreasing overall emissions in both military and civilian vehicles worldwide."

The 200W TEG is a modular component of a larger 1,000W TEG that GMZ Energy is developing for the $1.5 million TARDEC program. Combining a module approach with a scalable thermoelectric heat exchanger design, GMZ Energy will integrate multiple 200W blocks into a single 1,000W diesel engine waste heat recovery solution. The TARDEC TEG incorporates GMZ Energy's TG8-1.0 thermoelectric modules, which are the first commercially available, off-the-shelf modules capable of operating with continuous hot-side temperatures up to 600C while at power densities greater than one Watt/cm.

####

About GMZ Energy
GMZ Energy is the only provider of commercially viable, low-cost thermoelectric modules that reliably generate power from high-temperature heat sources. The companys TEG solutions can increase efficiency in virtually all internal combustion engines, improve the economics of large-scale industrial heating processes, and even add a power generation function to conventional combustion products such as boilers and camp stoves. GMZ Energy supplies its TEG modules to OEM partners in the automotive, heavy equipment, HVAC, consumer products, power generation, industrial waste heat and military industries. Founded in 2006 and headquartered in Waltham, MA, GMZs top-tier investors include Kleiner Perkins Caufield & Byers, BP Alternative Energy, I2BF, Mitsui Global Investment, and Energy Technology Ventures, a joint venture between General Electric, NRG Energy, and ConocoPhillips.

For more information, please click here

Contacts:
BIGfish Communications
Meredith Frazier
202-609-7622

Copyright © Businesswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Is this the 'holey' grail of batteries? May 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project