Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Snowballs to soot: The clumping density of many things seems to be a standard

High school student Jessica Young checking the packing density of random aggregates of plastic spheres in a cylinder. Young's work as a summer intern at NIST contributed to a paper arguing that rigid aggregates like those she's testing tend to clump together at roughly the same density regardless of scale, from microscopic soot to large comets.
Credit: Baum/NIST
High school student Jessica Young checking the packing density of random aggregates of plastic spheres in a cylinder. Young's work as a summer intern at NIST contributed to a paper arguing that rigid aggregates like those she's testing tend to clump together at roughly the same density regardless of scale, from microscopic soot to large comets.

Credit: Baum/NIST

Abstract:
Particles of soot floating through the air and comets hurtling through space have at least one thing in common: 0.36. That, reports a research group at the National Institute of Standards and Technology (NIST), is the measure of how dense they will get under normal conditions, and it's a value that seems to be constant for similar aggregates across an impressively wide size range from nanometers to tens of meters.*

Snowballs to soot: The clumping density of many things seems to be a standard

Gaithersburg, MD | Posted on June 10th, 2014

NIST hopes the results will help in the development of future measurement standards to aid climate researchers and others who need to measure and understand the behavior of aerosols like carbon soot in the atmosphere.

Soot comes mostly from combustion and is considered the second biggest driver of global warming, according to NIST chemist Christopher Zangmeister. It is made up of small round particles of carbon about 10 or 20 nanometers across. The particles stick together randomly in short chains and clumps of a half dozen or more spheres. These, in turn, clump loosely together to form larger, loose aggregates of 10 or more which over a few hours will compact into a somewhat tighter ball which is atmospheric soot.

The interesting question for chemists studying carbon aerosols is how tight? How dense? Among other things, the answer relates to the balance of climate effects from soot: heating from light absorption versus cooling from light reflection.

The maximum packing density of objects is a classic problem in mathematics, which has been fully solved for only the simplest cases. The assumed density in models of atmospheric soot is 0.74, which is the maximum packing density of perfect spheres, such as billiard balls, in a given space. But when Zangmeister's team made measurements of the packing density of actual soot particles, the figure they got was 0.36. "We figured, man, we've got to be wrong, we're off by a factor of two," Zangmeister recalls, but "a bunch more measurements" convinced them that 0.36 was correct. Why?

Enter the summer help. Two students, one in college and one in high school, who were working with Zangmeister's group last summer were set to the task of modeling the packing question with little 6 mm plastic spheres sold for pellet guns. They glued thousands of random combinations of spheres together in clumps of from 1 to 12 spheres, and then filled every available size of graduated cylinders and hollow spheres with their assemblies, over and over, and over.

Their charted results, as a function of clump size, form a curve that levels off at 0.36.

It gets better. Inspired by a book on the solar system he was reading with his son, Zangmeister checked NASA's literature. Comets are formed very much the same way as soot particles, except out of dust and ice, and they're a lot bigger. NASA's measurements on a collection of 20 comets estimate that packing density at between 0.2 and 0.4. So 0.36 may be an all-purpose value.**

NIST's interest in the nature of soot particles is driven by a desire to imitate them, according to Zangmeister. "It's amazing how much uncertainty there is in optical measurements of particles in the atmosphere. The reason for this uncertainty is rooted in something really important to NIST: there are no real methods for calibrations. You can calibrate any CO2 measurement using one of our Standard Reference Materials for CO2 in air, but there's no such thing as a bottle of standard aerosol or a standard aerosol generator. That's really at the heart of what we're trying to do: make a black material that simulates carbon that you can put into an aerosol and know it will come out the same way every time. It's a real materials chemistry project."

The agency is working with the National Research Council of Canada and Environment Canada on the project.

###

*C.D. Zangmeister, J.G. Radney, L.T. Dockery, J.T. Young, X. Ma, R. You and M.R. Zachariah., The packing density of rigid aggregates is independent of scale. PNAS Early Edition. Published online June 9, 2014. doi:10.1073/pnas.1403768111.

**0.36 is also very close to the reported values for compacted silicon dioxide monomers (ceramics industry) and pharmaceutical powders made from "microscale random aggregates."

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Discoveries

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Environment

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Aerospace/Space

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

To Infinity and Beyond with Nanosatellites August 10th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

PPPL applies quantum theory and Einstein's special relativity to plasma physics issues July 31st, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic