Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Seeing how a lithium-ion battery works: An exotic state of matter -- a 'random solid solution' -- affects how ions move through battery material

Diagram illustrates the process of charging or discharging the lithium iron phosphate (LFP) electrode. As lithium ions are removed during the charging process, it forms a lithium-depleted iron phosphate (FP) zone, but in between there is a solid solution zone (SSZ, shown in dark blue-green) containing some randomly distributed lithium atoms, unlike the orderly array of lithium atoms in the original crystalline material (light blue). This work provides the first direct observations of this SSZ phenomenon.

Illustration courtesy of the authors
Diagram illustrates the process of charging or discharging the lithium iron phosphate (LFP) electrode. As lithium ions are removed during the charging process, it forms a lithium-depleted iron phosphate (FP) zone, but in between there is a solid solution zone (SSZ, shown in dark blue-green) containing some randomly distributed lithium atoms, unlike the orderly array of lithium atoms in the original crystalline material (light blue). This work provides the first direct observations of this SSZ phenomenon.

Illustration courtesy of the authors

Abstract:
New observations by researchers at MIT have revealed the inner workings of a type of electrode widely used in lithium-ion batteries. The new findings explain the unexpectedly high power and long cycle life of such batteries, the researchers say.

Seeing how a lithium-ion battery works: An exotic state of matter -- a 'random solid solution' -- affects how ions move through battery material

Cambridge, MA | Posted on June 9th, 2014

The findings appear in a paper in the journal Nano Letters co-authored by MIT postdoc Jun Jie Niu, research scientist Akihiro Kushima, professors Yet-Ming Chiang and Ju Li, and three others.

The electrode material studied, lithium iron phosphate (LiFePO4), is considered an especially promising material for lithium-based rechargeable batteries; it has already been demonstrated in applications ranging from power tools to electric vehicles to large-scale grid storage. The MIT researchers found that inside this electrode, during charging, a solid-solution zone (SSZ) forms at the boundary between lithium-rich and lithium-depleted areas ó the region where charging activity is concentrated, as lithium ions are pulled out of the electrode.

Li says that this SSZ "has been theoretically predicted to exist, but we see it directly for the first time," in transmission electron microscope (TEM) videos taken during charging.

The observations help to resolve a longstanding puzzle about LiFePO4: In bulk crystal form, both lithium iron phosphate and iron phosphate (FePO4, which is left behind as lithium ions migrate out of the material during charging) have very poor ionic and electrical conductivities. Yet when treated ó with doping and carbon coating ó and used as nanoparticles in a battery, the material exhibits an impressively high charging rate. "It was quite surprising when this [rapid charging and discharging rate] was first demonstrated," Li says.

"We directly observed a metastable random solid solution that may resolve this fundamental problem that has intrigued [materials scientists] for many years," says Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and a professor of materials science and engineering.

The SSZ is a "metastable" state, persisting for at least several minutes at room temperature. Replacing a sharp interface between LiFePO4 and FePO4 that has been shown to contain many additional line defects called "dislocations," the SSZ serves as a buffer, reducing the number of dislocations that would otherwise move with the electrochemical reaction front. "We don't see any dislocations," Li says. This could be important because the generation and storage of dislocations can cause fatigue and limit the cycle life of an electrode.

Unlike conventional TEM imaging, the technique used in this work, developed in 2010 by Kushima and Li, makes it possible to observe battery components as they charge and discharge, which can reveal dynamic processes. "In the last four years, there has been a big explosion of using such in situ TEM techniques to study battery operations," Li says.

A better understanding of these dynamic processes could improve the performance of an electrode material by allowing better tuning of its properties, Li says.

Despite an incomplete understanding to date, lithium iron phosphate nanoparticles are already used at an industrial scale for lithium-ion batteries, Li explains. "The science is lagging behind the application," he says. "It's already scaled up and quite successful on the market. It's one of the success stories of nanotechnology."

"Compared to traditional lithium-ion, [lithium iron phosphate] is environmentally friendly, and very stable," Niu says. "But it's important for this material to be well understood."

While the discovery of the SSZ was made in LiFePO4, Li says, "The same principle may apply to other electrode materials. People are looking for high-power electrode materials, and such metastable states could exist in other electrode materials that are inert in bulk form. Ö The phenomenon discovered could be very general, and not specific to this material."

###

The research was supported by the National Science Foundation.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Andrew Carleen

617-253-1682

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Imaging

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Discoveries

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project