Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Seeing how a lithium-ion battery works: An exotic state of matter -- a 'random solid solution' -- affects how ions move through battery material

Diagram illustrates the process of charging or discharging the lithium iron phosphate (LFP) electrode. As lithium ions are removed during the charging process, it forms a lithium-depleted iron phosphate (FP) zone, but in between there is a solid solution zone (SSZ, shown in dark blue-green) containing some randomly distributed lithium atoms, unlike the orderly array of lithium atoms in the original crystalline material (light blue). This work provides the first direct observations of this SSZ phenomenon.

Illustration courtesy of the authors
Diagram illustrates the process of charging or discharging the lithium iron phosphate (LFP) electrode. As lithium ions are removed during the charging process, it forms a lithium-depleted iron phosphate (FP) zone, but in between there is a solid solution zone (SSZ, shown in dark blue-green) containing some randomly distributed lithium atoms, unlike the orderly array of lithium atoms in the original crystalline material (light blue). This work provides the first direct observations of this SSZ phenomenon.

Illustration courtesy of the authors

Abstract:
New observations by researchers at MIT have revealed the inner workings of a type of electrode widely used in lithium-ion batteries. The new findings explain the unexpectedly high power and long cycle life of such batteries, the researchers say.

Seeing how a lithium-ion battery works: An exotic state of matter -- a 'random solid solution' -- affects how ions move through battery material

Cambridge, MA | Posted on June 9th, 2014

The findings appear in a paper in the journal Nano Letters co-authored by MIT postdoc Jun Jie Niu, research scientist Akihiro Kushima, professors Yet-Ming Chiang and Ju Li, and three others.

The electrode material studied, lithium iron phosphate (LiFePO4), is considered an especially promising material for lithium-based rechargeable batteries; it has already been demonstrated in applications ranging from power tools to electric vehicles to large-scale grid storage. The MIT researchers found that inside this electrode, during charging, a solid-solution zone (SSZ) forms at the boundary between lithium-rich and lithium-depleted areas — the region where charging activity is concentrated, as lithium ions are pulled out of the electrode.

Li says that this SSZ "has been theoretically predicted to exist, but we see it directly for the first time," in transmission electron microscope (TEM) videos taken during charging.

The observations help to resolve a longstanding puzzle about LiFePO4: In bulk crystal form, both lithium iron phosphate and iron phosphate (FePO4, which is left behind as lithium ions migrate out of the material during charging) have very poor ionic and electrical conductivities. Yet when treated — with doping and carbon coating — and used as nanoparticles in a battery, the material exhibits an impressively high charging rate. "It was quite surprising when this [rapid charging and discharging rate] was first demonstrated," Li says.

"We directly observed a metastable random solid solution that may resolve this fundamental problem that has intrigued [materials scientists] for many years," says Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and a professor of materials science and engineering.

The SSZ is a "metastable" state, persisting for at least several minutes at room temperature. Replacing a sharp interface between LiFePO4 and FePO4 that has been shown to contain many additional line defects called "dislocations," the SSZ serves as a buffer, reducing the number of dislocations that would otherwise move with the electrochemical reaction front. "We don't see any dislocations," Li says. This could be important because the generation and storage of dislocations can cause fatigue and limit the cycle life of an electrode.

Unlike conventional TEM imaging, the technique used in this work, developed in 2010 by Kushima and Li, makes it possible to observe battery components as they charge and discharge, which can reveal dynamic processes. "In the last four years, there has been a big explosion of using such in situ TEM techniques to study battery operations," Li says.

A better understanding of these dynamic processes could improve the performance of an electrode material by allowing better tuning of its properties, Li says.

Despite an incomplete understanding to date, lithium iron phosphate nanoparticles are already used at an industrial scale for lithium-ion batteries, Li explains. "The science is lagging behind the application," he says. "It's already scaled up and quite successful on the market. It's one of the success stories of nanotechnology."

"Compared to traditional lithium-ion, [lithium iron phosphate] is environmentally friendly, and very stable," Niu says. "But it's important for this material to be well understood."

While the discovery of the SSZ was made in LiFePO4, Li says, "The same principle may apply to other electrode materials. People are looking for high-power electrode materials, and such metastable states could exist in other electrode materials that are inert in bulk form. … The phenomenon discovered could be very general, and not specific to this material."

###

The research was supported by the National Science Foundation.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Andrew Carleen

617-253-1682

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Imaging

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Distance wireless charging enhanced by magnetic metamaterials: A metamaterial shell is capable of multiplying transmission efficiency several times over May 13th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic