Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Targeting tumors using silver nanoparticles: A new platform developed at UCSB increases the efficiency of drug delivery and allows excess particles to be washed away

Prostate cancer cells were targeted by two separate silver nanoparticles (red and green), while the cell nucleus was labeled in blueusing Hoescht dye.

Credit: UCSB
Prostate cancer cells were targeted by two separate silver nanoparticles (red and green), while the cell nucleus was labeled in blueusing Hoescht dye.

Credit: UCSB

Abstract:
Scientists at UC Santa Barbara have designed a nanoparticle that has a couple of unique — and important — properties. Spherical in shape and silver in composition, it is encased in a shell coated with a peptide that enables it to target tumor cells. What's more, the shell is etchable so those nanoparticles that don't hit their target can be broken down and eliminated. The research findings appear today in the journal Nature Materials.

Targeting tumors using silver nanoparticles: A new platform developed at UCSB increases the efficiency of drug delivery and allows excess particles to be washed away

Santa Barbara, CA | Posted on June 8th, 2014

The core of the nanoparticle employs a phenomenon called plasmonics. In plasmonics, nanostructured metals such as gold and silver resonate in light and concentrate the electromagnetic field near the surface. In this way, fluorescent dyes are enhanced, appearing about tenfold brighter than their natural state when no metal is present. When the core is etched, the enhancement goes away and the particle becomes dim.

UCSB's Ruoslahti Research Laboratory also developed a simple etching technique using biocompatible chemicals to rapidly disassemble and remove the silver nanoparticles outside living cells. This method leaves only the intact nanoparticles for imaging or quantification, thus revealing which cells have been targeted and how much each cell internalized.

"The disassembly is an interesting concept for creating drugs that respond to a certain stimulus," said Gary Braun, a postdoctoral associate in the Ruoslahti Lab in the Department of Molecular, Cellular and Developmental Biology (MCDB). "It also minimizes the off-target toxicity by breaking down the excess nanoparticles so they can then be cleared through the kidneys."

This method for removing nanoparticles unable to penetrate target cells is unique. "By focusing on the nanoparticles that actually got into cells," Braun said, "we can then understand which cells were targeted and study the tissue transport pathways in more detail."

Some drugs are able to pass through the cell membrane on their own, but many drugs, especially RNA and DNA genetic drugs, are charged molecules that are blocked by the membrane. These drugs must be taken in through endocytosis, the process by which cells absorb molecules by engulfing them.

"This typically requires a nanoparticle carrier to protect the drug and carry it into the cell," Braun said. "And that's what we measured: the internalization of a carrier via endocytosis."

Because the nanoparticle has a core shell structure, the researchers can vary its exterior coating and compare the efficiency of tumor targeting and internalization. Switching out the surface agent enables the targeting of different diseases — or organisms in the case of bacteria — through the use of different target receptors. According to Braun, this should turn into a way to optimize drug delivery where the core is a drug-containing vehicle.

"These new nanoparticles have some remarkable properties that have already proven useful as a tool in our work that relates to targeted drug delivery into tumors," said Erkki Ruoslahti, adjunct distinguished professor in UCSB's Center for Nanomedicine and MCDB department. "They also have potential applications in combating infections. Dangerous infections caused by bacteria that are resistant to all antibiotics are getting more common, and new approaches to deal with this problem are desperately needed. Silver is a locally used antibacterial agent and our targeting technology may make it possible to use silver nanoparticles in treating infections anywhere in the body."

####

For more information, please click here

Contacts:
Julie Cohen

805-893-7220

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Materials/Metamaterials

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE