Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Opening a wide window on the nano-world of surface catalysis

A surface catalyst with a built-in sensor: that's what chemist Hui Wang and co-workers built by bridging a size gap on the nano-scale. Their silver nanoparticles combine plasmon resonance with catalytic activity, making SERS and other analytical data available in real time on a surface catalyst.
A surface catalyst with a built-in sensor: that's what chemist Hui Wang and co-workers built by bridging a size gap on the nano-scale. Their silver nanoparticles combine plasmon resonance with catalytic activity, making SERS and other analytical data available in real time on a surface catalyst.

Abstract:
Surface catalysts are notoriously difficult to study mechanistically, but scientists at the University of South Carolina and Rice University have shown how to get real-time reaction information from Ag nanocatalysts that have long frustrated attempts to describe their kinetic behavior in detail.

Opening a wide window on the nano-world of surface catalysis

Columbia, SC | Posted on June 6th, 2014

The key to the team's success was bridging a size gap that had represented a wide chasm to researchers in the past. To be effective as nanocatalysts, noble metals such as Au, Pt, Pd and Ag typically must be nanoparticles smaller than 5 nm, says Hui Wang, an assistant professor of chemistry and biochemistry at South Carolina who led the team in collaboration with Peter Nordlander of Rice University.

Unfortunately, 5 nm is below the size threshold at which plasmon resonance can be effectively harnessed. Plasmon resonance is a phenomenon giving rise to a dramatic enhancement of impinging electromagnetic signals, which is the basis of analytical techniques such as surface enhanced Raman spectroscopy (SERS).

The ability to utilize the analytical power of plasmon resonance in a nanomaterial requires larger nanoparticles, "at least tens of nanometers in diameter," says Wang. The incompatibility of the two size regimes had long precluded the use of a range of spectral techniques based on plasmon resonance—SERS is just one—on noble metal nanocatalysts under 5 nm.

But as they just reported in Nano Letters, Wang and his team managed to combine the best of both size worlds.

Starting with cuboidal nanoparticles about 50 nm wide and 120 nm long, they chemically etched flat surfaces in a way that generated curved surfaces, creating nanoparticles that successfully catalyzed a model surface hydrogenation reaction. According to the team, the catalysis is the result of replacing low-energy atoms on the flat surface with exposed atoms after etching.

"If you have a flat surface, the coordination number of every single surface atom is either eight or nine," says Wang of their nanoparticles, which had a surface of pure Ag before etching. "But if you have some atomic steps on a surface, the coordination number will decrease. These exposed atoms are more active."

The stepped surface of the etched nanomaterial thus mimics the environment of a sub-5-nm nanoparticle: more exposed, active surface atoms can participate in catalysis.

And the catalysis is on a nanoparticle with plasmonic activity, which the researchers showed can be "tuned" by varying the shape and size of the nanoparticles. The team demonstrated the ability to convert cuboids (something like a short rod but with square rather than round sides) into what they termed "nanorice" and "nanodumbbells" through two different kinds of chemical etching. The two shapes had distinct plasmonic properties that could be varied by stopping the etching at different stages to create different sizes and shapes of nanoscale rice and dumbbells.

That plasmonic activity can be harnessed for SERS and other analytical techniques to study catalytic reactions in great detail as they occur.

"Raman spectroscopy is extremely powerful, with information about molecular fingerprints—you can see the structures, you can tell how the molecules are oriented on the surface," Wang says. "If you want to use GC, HPLC, or mass spec, you have to damage a sample, but here you can actually monitor the reaction in real time.

"And there is much more information with this approach. For example, we identified the intermediate along the reaction pathway. With those other approaches, it's really hard to do that."

####

For more information, please click here

Contacts:
Steven Powell

803-777-1923

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project