Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Short nanotubes target pancreatic cancer: Rice, MD Anderson scientists refine technique for attacking hard-to-reach tumors - See more at: http://news.rice.edu/2014/06/05/short-nanotubes-target-pancreatic-cancer/#sthash.If4knT1G.dpuf

Rice researchers found that chemotherapy agents attached to nanotubes are too large to go through the pores of normal blood vessels (left), but small enough to pass through the pores of cancer-related vessels. Once through, the customized nanotubes can be taken up by cancer cells to deliver their therapeutic cargoes.Credit: Rei Suzuki/University of Texas MD Anderson Cancer Center
Rice researchers found that chemotherapy agents attached to nanotubes are too large to go through the pores of normal blood vessels (left), but small enough to pass through the pores of cancer-related vessels. Once through, the customized nanotubes can be taken up by cancer cells to deliver their therapeutic cargoes.

Credit: Rei Suzuki/University of Texas MD Anderson Cancer Center

Abstract:
Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice University and the University of Texas MD Anderson Cancer Center.

Short nanotubes target pancreatic cancer: Rice, MD Anderson scientists refine technique for attacking hard-to-reach tumors - See more at: http://news.rice.edu/2014/06/05/short-nanotubes-target-pancreatic-cancer/#sthash.If4knT1G.dpuf

Houston, TX | Posted on June 5th, 2014

Pristine nanotubes produced through a new process developed at Rice can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through.

The nanotubes may then target and infiltrate the cancerous cells' nuclei, where the drugs can be released through sonication - that is, by shaking them.

The research led by Rice chemist Andrew Barron was reported in the Royal Society of Chemistry's Journal of Materials Chemistry B.

Most pancreatic cancer patients die within a year of diagnosis and have a five-year survival rate of 6 percent, partially because there is no method for early detection, according to the American Cancer Society. Tumors are often inoperable and pancreatic cancer cells are also difficult to reach with chemotherapy, said co-author Jason Fleming, a professor of surgical oncology at MD Anderson.

"These findings are encouraging because they offer a potential delivery solution for pancreatic cancer patients whose tumors resist standard chemotherapy," Fleming said. "There are molecular and biological barriers to efficient delivery of chemotherapy to pancreatic cancer tumors, and these nanotubes might be able to make some of those irrelevant."

Rice scientists made nanotubes pure enough to modify for the purpose and small enough to squeeze through the body's defenses, Barron said. The researchers knew from previous work that nanotubes could be modified - a process called functionalization - to carry chemotherapy agents and release them at a controlled rate through sonication.

"This time, we were trying to work out how long the tubes should be and the extent of functionalization to maximize uptake by the cells," Barron said.

Several discoveries were key, he said. First, Rice graduate student, alumnus and co-author Alvin Orbaek purified the carbon nanotubes of iron catalysts necessary to their growth by flushing them with chlorine. "Leftover iron particles damage the tubes through oxidation," Barron said. "That makes subsequent use difficult."

The next step was to cut the nanotubes down to size. Very long nanotubes are floppy and hard to deal with, Barron said. Enrico Andreoli, a postdoctoral research associate in Barron's group and lead author of the paper, used a thermal process to chop them to an average length of 50 nanometers. (A human hair is about 100,000 nanometers wide.)

"Instead of ending up with a fluffy nanotube powder, we get something that looks like a hockey puck," Barron said. "It's not dense - it looks like a spongy puck - but you can cut it with a razor blade. You can weigh it and do accurate chemistry with it."

Barron's lab added polyethyleneimine (PEI) to the nanotube surfaces. In lab tests, the modified tubes were easily dispersed in liquid and able to pass through barriers into live cancer cells to infiltrate the nuclei. A small-molecule variant of PEI proved to be less toxic to cells than larger versions, Barron said.

"This research shows that the particles are small enough to get inside cells where you like them to be and that they may have an increased killing advantage - but that's still unknown," Fleming said.

Fleming, whose work focuses on improving drug delivery for pancreatic cancer, cautioned that more research is required. "The next step will be to test this approach in mice that have allografts taken from human tumors," he said. "The architecture of these tumors will more closely resemble that of human pancreatic cancer."

Co-authors are Robert Hauge, a distinguished faculty fellow in chemistry, and Wade Adams, a senior faculty fellow in materials science and nanoengineering, both at Rice, and postdoctoral fellow Rei Suzuki and Manoop Bhutani, a professor of gastroenterology, hepatology and nutrition, both at MD Anderson. Barron is Rice's Charles W. Duncan Jr.-Welch Professor of Chemistry and a professor of materials science and nanoengineering.

The Astellas Foundation for Research on Metabolic Disorders, the National Institutes of Health through MD Anderson's Cancer Center Support Grant and the Robert A. Welch Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice’s undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Barron Research Group:

The University of Texas MD Anderson Cancer Center:

Related News Press

News and information

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Nanomedicine

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Discoveries

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Announcements

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

New chip promising for tumor-targeting research September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE