Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Molecular self-assembly scales up from nanometers to millimeters

June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters

Abstract:
To ensure the survival of Moore's law and the success of the nanoelectronics industry, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored.

Story:
Can self-assembly based technologies offer advantages beyond conventional top-down lithography approaches?

A joint effort of the Aalto University of Helsinki, the Politecnico di Milano, and VTT Technical Research Centre of Finland has now demonstrated that it is possible to align molecular self-assemblies from nanometers to millimeters without the intervention of external stimuli.

Molecular self-assembly is a concept derived from Nature that leads to the spontaneous organization of molecules into more complex and functional supramolecular structures. The recipe is "encoded" in the chemical structure of the self-assembling molecules. Molecular self-assembly has been exploited for "templating" functional devices, molecular wires, memory elements, etc. However, it has typically required additional processing steps to achieve extended alignment of the structures.

The new finding showed that by engineering recognition elements between polymers and fluorinated small molecules, it has been possible to drive their spontaneous self-assembly from nanometers to millimeters, thanks to the judicious use of noncovalent interactions. After the processing, fluoromolecules can optionally be removed upon thermal treatment.

This concept opens up new avenues in large area nanoconstruction, for example in templating nanowires, which is currently under investigation.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Communications article: "Halogen-bonded mesogens direct polymer self-assemblies over millimetre length scale" N. Houbenov, R. Milani, M. Poutanen, J. Haataja, V. Dichiarante, J. Sainio, J. Ruokolainen, G. Resnati, P. Metrangolo, and O. Ikkala, , Nature Communications 5:4043, doi: 10.1038/ncomms5043 (2014):

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE