Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum criticality observed in new class of materials: Observation of quantum phenomenon advances new theoretical understandings

An artist's depiction of a "quantum critical point," the point at which a material undergoes a transition from one phase to another at absolute zero. The recent discovery of quantum critical points in a class of iron superconductors could allow physicists to develop a classification scheme for quantum criticality, a strange electronic state that may be intimately related to high-temperature superconductivity. Credit: thinkstockphotos.com/Rice University
An artist's depiction of a "quantum critical point," the point at which a material undergoes a transition from one phase to another at absolute zero. The recent discovery of quantum critical points in a class of iron superconductors could allow physicists to develop a classification scheme for quantum criticality, a strange electronic state that may be intimately related to high-temperature superconductivity.

Credit: thinkstockphotos.com/Rice University

Abstract:
Quantum criticality, the strange electronic state that may be intimately related to high-temperature superconductivity, is notoriously difficult to study. But a new discovery of "quantum critical points" could allow physicists to develop a classification scheme for quantum criticality — the first step toward a broader explanation.

Quantum criticality observed in new class of materials: Observation of quantum phenomenon advances new theoretical understandings

Houston, TX | Posted on June 4th, 2014

Quantum criticality occurs in only a few composite crystalline materials and happens at absolute zero — the lowest possible temperature in the universe. The paucity of experimental observations of quantum criticality has left theorists wanting in their quest for evidence of possible causes.

The new finding of "quantum critical points" is in a class of iron superconductors known as "oxypnictides" (pronounced OXEE-nick-tydes). The research by physicists at Rice University, Princeton University, China's Zhejiang University and Hangzhou Normal University, France's École Polytechnique and Sweden's Linköping University appears in this month's issue of Nature Materials.

"One of the challenges of studying quantum criticality is trying to completely classify the quantum critical points that have been observed so far," said Rice physicist Qimiao Si, a co-author of the new study. "There are indications that there's more than one type, but do we stop at two? As theorists, we are not yet at the point where we can enumerate all of the possibilities.

"Another challenge is that there are still very few materials where we can say, with certainty, that a quantum critical point exists," Si said. "There's a very strong need, on these general grounds, for extending the materials basis of quantum criticality."

In 2001, Si and colleagues advanced a theory to explain how quantum critical points could give seemingly conventional metals unconventional properties. High-temperature superconductors are one such material, and another is "heavy fermion" metals, so-called because the electrons inside them can appear to be thousands of times more massive than normal.

Heavy fermion metals are prototype systems for quantum criticality. When these metals reach their quantum critical point, the electrons within them act in unison and the effects of even one electron moving through the system have widespread results throughout. This is very different from the electron interactions in a common wiring material like copper. It is these collective effects that have increasingly convinced physicists of a possible link between superconductivity and quantum criticality.

"The quantum critical point is the point at which a material undergoes a transition from one phase to another at absolute zero," said Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. "Unlike the classical phase transition of ice melting into water, which occurs when heat is provided to the system, the quantum phase transition results from quantum-mechanical forces. The effects are so powerful that they can be detected throughout the space inside the system and over a long time."

To observe quantum critical points in the lab, physicists cool their samples — be they heavy fermion metals or high-temperature superconductors — to extremely cold temperatures. Though it is impossible to chill anything to absolute zero, physicists can drive the phase transition temperatures to attainable low temperatures by applying pressure, magnetic fields or by "doping" the samples to slightly alter the spacing between atoms.

Si and colleagues have been at the forefront of studying quantum critical points for more than a decade. In 2003, they developed the first thermodynamic method for systematically measuring and classifying quantum critical points. In 2004 and again in 2007, they used tests on heavy fermion metals to show how the quantum critical phenomena violated the standard theory of metals — Landau's Fermi-liquid theory.

In 2008, following the groundbreaking discovery of iron-based pnictide superconductors in Japan and China, Si and colleagues advanced the first theory that explained how superconductivity develops out of a bad-metal normal state in terms of magnetic quantum fluctuations. Also that year, Si co-founded the International Collaborative Center on Quantum Matter (ICC-QM), a joint effort by Rice, Zhejiang University, the London Centre for Nanotechnology and the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany.

In 2009, Si and co-authors offered a theoretical framework to predict how the pnictides would behave at or near a quantum critical point. Several of these predictions were borne out in a series of studies the following year.

In the current Nature Materials study, Si and ICC-QM colleagues Zhu'an Xu, an experimentalist at Zhejiang, and Jianhui Dai, a theorist at Hangzhou, worked with Antoine Georges of École Polytechnique, Nai Phuan Ong of Princeton and others to look for evidence of quantum critical points in an iron-based heavy fermion metallic compound made of cerium, nickel, arsenic and oxygen. The material is related to the family of iron-based pnictide superconductors.

"Heavy fermions are the canonical system for the in-depth study of quantum criticality," Si said. "We have considered heavy fermion physics in the iron pnictides before, but in those compounds the electrons of the iron elements are ordered in such a way that it makes it more difficult to precisely study quantum criticality.

"The compound that we studied here is the first one among the pnictide family that turned out to feature clear-cut heavy fermion physics. That was a pleasant surprise for me," Si said.

Through measurements of electrical transport properties in the presence of a magnetic field, the study provided evidence that the quantum critical point belongs to an unconventional type proposed in the 2001 work of Si and colleagues.

"Our work in this new heavy fermion pnictide suggests that the type of quantum critical point that has been theoretically advanced is robust," Si said. "This bodes well with the notion that quantum criticality can eventually be classified."

He said it is important to note that other homologues — similar iron-based materials — may now be studied to look for quantum critical points.

"Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial to the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality," Si said.

Additional co-authors include Yongkang Lou, Yuke Li, Chunmu Feng and Guanghan Cao, all of Zhejiang University; Leonid Pourovskii of both École Polytechnique and Linköping University; and S.E. Rowley of Princeton University.

The research was supported by the National Basic Research Program of China, the National Science Foundation of China, the NSF of Zhejiang Province, the Fundamental Research Funds for the Central Universities of China, the National Science Foundation, the Nano Electronics Research Corporation, the Robert A. Welch Foundation, the China Scholarship Council and the Swedish National Infrastructure for Computing.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice’s undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the Nature Materials paper is available at:

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Superconductivity

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Bar-Ilan U. researcher first to observe 'god particle' analogue in superconductors: Introduces 'tabletop' technique for examining the standard model of physics' most celebrated missing link February 19th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Research partnerships

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

European roadmap for graphene science and technology published February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Increasing Efficiency of Cooling Devices in Oil, Gas Industries February 21st, 2015

Quantum nanoscience

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE