Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Progress on detecting glucose levels in saliva

 Dealing with the 1 percent	A plasmonic interferometer can detect glucose molecules in water. Detection of glucose in a complex fluid is more challenging. Controlling the distance between grooves and using dye chemistry on glucose molecules allows researchers to measure glucose levels despite the 1 percent of saliva that is not water.
Dealing with the 1 percent A plasmonic interferometer can detect glucose molecules in water. Detection of glucose in a complex fluid is more challenging. Controlling the distance between grooves and using dye chemistry on glucose molecules allows researchers to measure glucose levels despite the 1 percent of saliva that is not water.

Abstract:
Researchers at Brown have developed a new biochip sensor that that can selectively measure glucose concentrations in a complex fluid like saliva. Their approach combines dye chemistry with plasmonic interferometry. A dependable glucose monitoring system that uses saliva rather than blood would be a significant improvement in managing diabetes.

Progress on detecting glucose levels in saliva

Providence, RI | Posted on June 3rd, 2014

Researchers from Brown University have developed a new biochip sensor that can selectively measure concentrations of glucose in a complex solution similar to human saliva. The advance is an important step toward a device that would enable people with diabetes to test their glucose levels without drawing blood.

The new chip makes use of a series of specific chemical reactions combined with plasmonic interferometry, a means of detecting chemical signature of compounds using light. The device is sensitive enough to detect differences in glucose concentrations that amount to just a few thousand molecules in the sampled volume.

"We have demonstrated the sensitivity needed to measure glucose concentrations typical in saliva, which are typically 100 times lower than in blood," said Domenico Pacifici, assistant professor of engineering at Brown, who led the research. "Now we are able to do this with extremely high specificity, which means that we can differentiate glucose from the background components of saliva."

The new research is described in the cover article of the June issue of the journal Nanophotonics.

The biochip is made from a one-inch-square piece of quartz coated with a thin layer of silver. Etched in the silver are thousands of nanoscale interferometers — tiny slits with a groove on each side. The grooves measure 200 nanometers wide, and the slit is 100 nanometers wide — about 1,000 times thinner than a human hair. When light is shined on the chip, the grooves cause a wave of free electrons in the silver — a surface plasmon polariton — to propagate toward the slit. Those waves interfere with light that passes through the slit. Sensitive detectors then measure the patterns of interference generated by the grooves and slits.

When a liquid is deposited on the chip, the light and the surface plasmon waves propagate through that liquid before they interfere with each other. That alters the interference patterns picked up by the detectors, depending on the chemical makeup of the liquid. By adjusting the distance between the grooves and the center slit, the interferometers can be calibrated to detect the signature of specific compounds or molecules, with high sensitivity in extremely small sample volumes.

In a paper published in 2012, the Brown team showed that interferometers on a biochip could be used to detect glucose in water. However, selectively detecting glucose in a complex solution like human saliva was another matter.

"Saliva is about 99 percent water, but it's the 1 percent that's not water that presents problems," Pacifici said. "There are enzymes, salts, and other components that may affect the response of the sensor. With this paper we solved the problem of specificity of our sensing scheme."

They did that by using dye chemistry to create a trackable marker for glucose. The researchers added microfluidic channels to the chip to introduce two enzymes that react with glucose in a very specific way. The first enzyme, glucose oxidase, reacts with glucose to form a molecule of hydrogen peroxide. This molecule then reacts with the second enzyme, horseradish peroxidase, to generate a molecule called resorufin, which can absorb and emit red light, thus coloring the solution. The researchers could then tune the interferometers to look for the red resorufin molecules.

"The reaction happens in a one-to-one fashion: A molecule of glucose generates one molecule of resorufin," Pacifici said. "So we can count the number of resorufin molecules in the solution, and infer the number of glucose molecules that were originally present in solution."

The team tested its combination of dye chemistry and plasmonic interferometry by looking for glucose in artificial saliva, a mixture of water, salts and enzymes that resembles the real human saliva. They found that they could detect resorufin in real time with great accuracy and specificity. They were able to detect changes in glucose concentration of 0.1 micromoles per liter — 10 times the sensitivity that can be achieved by interferometers alone.

The next step in the work, Pacifici says, is to start testing the method in real human saliva. Ultimately, the researchers hope they can develop a small, self-contained device that could give diabetics a noninvasive way to monitor their glucose levels.

There are other potential applications as well.

"We are now calibrating this device for insulin," Pacifici said, "but in principle we could properly modify this ‘plasmonic cuvette' sensor for detection of any molecule of interest."

It could be used to detect toxins in air or water or used in the lab to monitor chemical reactions as they occur at the sensor surface in real time, Pacifici said.

The work is part of a collaboration between Pacifici's group at Brown and the lab of his colleague Tayhas Palmore, professor of engineering. Graduate students Vince S. Siu, Jing Feng, and Patrick W. Flanigan are coauthors on the paper. The work was supported by National Science Foundation (CBET-1159255, DMR-1203186 and HRD-0548311) and the Juvenile Diabetes Research Foundation (JDRF Grant 17-2013-483).

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

Photonics/Optics/Lasers

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE