Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > FEI and University of Manchester Announce Collaboration Agreement for Metals Research

Abstract:
The new Metals Lab involves a multiscale, three-dimensional correlative imaging workflow to better understand and develop metallic alloys for the automotive, aerospace, nuclear, and oil & gas industries.

FEI and University of Manchester Announce Collaboration Agreement for Metals Research

Hillsboro, OR and Manchester, UK | Posted on June 2nd, 2014

FEI (NASDAQ: FEIC) and The University of Manchester announce their collaboration on the Metals Lab at The University of Manchester's Electron Microscopy Centre in the School of Materials. The lab will focus on steels and non-ferrous alloys research in an effort to develop high-performance materials for use in automotive, aerospace, nuclear, oil & gas, and other industrial sectors where advanced metallic alloys play a critical role.

Professor Phil Withers, director of the BP International Centre for Advanced Materials at The University of Manchester, states, "Modern alloys are critically dependent on the role of alloying elements. Whether these are relatively common elements, like chromium in steel to confer corrosion resistance, or rhenium and ruthenium in nickel-base super alloys for high-temperature strength, even small improvements can impact heavily on their economics - especially for the steel industry - where millions of tons of material quickly translate into millions of dollars of extra cost. The ability to confidently reduce, replace, or exploit these alloying elements without a reduction in performance can have huge economic impacts across a range of sectors. With new electron microscopes, software, and the ability to manage multiple, large datasets, we can now positively engage with these demands from industry."

A multiscale, three-dimensional (3D) correlative imaging workflow is applied at the Metals Lab to understand the nature of life-limiting degradation processes over a wide range of spatial scales. MicroCT equipment is used to identify areas of interest (such as cracks or pits), which are then evaluated using the high-resolution Quanta™ 3D and Nova NanoLab™ DualBeam™ focused ion beam (FIB)/scanning electron microscopes (SEMs) and 3D slice and view reconstruction software from FEI. The Titan™ G2 80-200 transmission electron microscope (TEM) with SuperEDX™ is used to provide atomic-scale imaging and compositional analysis, in both 2 and 3D. FEI`s Avizo® software is used to visualize, correlate and combine datasets recorded from this suite of tools. The Talos™ TEM is also installed in the lab for nanoscale materials characterization, while the high performance of the aberration-corrected Titan is used for more advanced research.

The multiscale workflow permits investigations of the root causes of behavior and failure at the atomic scale, while at the same time, ensuring that those small-scale observations accurately represent the structure and composition of the material at larger scales. This ability to characterize the same sample on different length scales is crucial to improve properties like strength, creep, fatigue and corrosion of metals, where these macroscopic properties are linked to microscopic effects down to the atomic scale.

"The need to characterize metals on the nanoscale is pushing the boundaries of current commercial technologies," states Professor Grace Burke, director of the Materials Performance Centre at The University of Manchester. "This workflow from FEI is essential to our continued development and understanding of new materials, namely, the ability to characterize individual structures, particles and their constituent phases, in real time, at the highest sensitivity and spatial resolution."

Trisha Rice, FEI's vice president and general manager for Materials Science, adds, "This partnership will enable us to develop and refine new multiscale techniques and approaches that will drive the next wave of advancements in metal research and development. The University of Manchester has a well-recognized history in microanalysis and quantification, and we are pleased to embark on this collaboration with them."

For more information, please visit www.fei.com/materials-science/metals/.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enable customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,600 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

About the University of Manchester

The University of Manchester, a member of the prestigious Russell Group of British universities, is the largest and most popular university in the UK. It has 20 academic schools and hundreds of specialist research groups undertaking pioneering multi-disciplinary teaching and research of worldwide significance. According to the results of the 2008 Research Assessment Exercise, The University of Manchester is one of the country’s major research institutions, rated third in the UK in terms of ‘research power’, and has had no fewer than 25 Nobel laureates either work or study there. The University had an annual income of Ł807 million in 2011/12.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Quanta 3D and Nova NanoLab DualBeams, Titan and Talos TEMs, and Avizo software. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship, deliver and install the tools or software as expected; failure of the product or technology to perform as expected; unexpected technology problems and challenges; changes to the technology; the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results; and the inability of the customer to deploy the tools or develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Keysight Technologies Introduces Ultrafast-Scanning 9500 Atomic Force Microscope: New Integrated Software, Hardware Delivers Unmatched Scan Rates June 29th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Tools

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Keysight Technologies Introduces Ultrafast-Scanning 9500 Atomic Force Microscope: New Integrated Software, Hardware Delivers Unmatched Scan Rates June 29th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Energy

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Aerospace/Space

Discovery paves way for new kinds of superconducting electronics June 22nd, 2015

Deben reports on how the University of Portsmouth use in situ µXCT compressive testing to help answer how materials respond to complex loading conditions June 17th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Ultrafast heat conduction can manipulate nanoscale magnets June 8th, 2015

Research partnerships

June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project