Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > FEI and University of Manchester Announce Collaboration Agreement for Metals Research

Abstract:
The new Metals Lab involves a multiscale, three-dimensional correlative imaging workflow to better understand and develop metallic alloys for the automotive, aerospace, nuclear, and oil & gas industries.

FEI and University of Manchester Announce Collaboration Agreement for Metals Research

Hillsboro, OR and Manchester, UK | Posted on June 2nd, 2014

FEI (NASDAQ: FEIC) and The University of Manchester announce their collaboration on the Metals Lab at The University of Manchester's Electron Microscopy Centre in the School of Materials. The lab will focus on steels and non-ferrous alloys research in an effort to develop high-performance materials for use in automotive, aerospace, nuclear, oil & gas, and other industrial sectors where advanced metallic alloys play a critical role.

Professor Phil Withers, director of the BP International Centre for Advanced Materials at The University of Manchester, states, "Modern alloys are critically dependent on the role of alloying elements. Whether these are relatively common elements, like chromium in steel to confer corrosion resistance, or rhenium and ruthenium in nickel-base super alloys for high-temperature strength, even small improvements can impact heavily on their economics - especially for the steel industry - where millions of tons of material quickly translate into millions of dollars of extra cost. The ability to confidently reduce, replace, or exploit these alloying elements without a reduction in performance can have huge economic impacts across a range of sectors. With new electron microscopes, software, and the ability to manage multiple, large datasets, we can now positively engage with these demands from industry."

A multiscale, three-dimensional (3D) correlative imaging workflow is applied at the Metals Lab to understand the nature of life-limiting degradation processes over a wide range of spatial scales. MicroCT equipment is used to identify areas of interest (such as cracks or pits), which are then evaluated using the high-resolution Quanta™ 3D and Nova NanoLab™ DualBeam™ focused ion beam (FIB)/scanning electron microscopes (SEMs) and 3D slice and view reconstruction software from FEI. The Titan™ G2 80-200 transmission electron microscope (TEM) with SuperEDX™ is used to provide atomic-scale imaging and compositional analysis, in both 2 and 3D. FEI`s Avizo® software is used to visualize, correlate and combine datasets recorded from this suite of tools. The Talos™ TEM is also installed in the lab for nanoscale materials characterization, while the high performance of the aberration-corrected Titan is used for more advanced research.

The multiscale workflow permits investigations of the root causes of behavior and failure at the atomic scale, while at the same time, ensuring that those small-scale observations accurately represent the structure and composition of the material at larger scales. This ability to characterize the same sample on different length scales is crucial to improve properties like strength, creep, fatigue and corrosion of metals, where these macroscopic properties are linked to microscopic effects down to the atomic scale.

"The need to characterize metals on the nanoscale is pushing the boundaries of current commercial technologies," states Professor Grace Burke, director of the Materials Performance Centre at The University of Manchester. "This workflow from FEI is essential to our continued development and understanding of new materials, namely, the ability to characterize individual structures, particles and their constituent phases, in real time, at the highest sensitivity and spatial resolution."

Trisha Rice, FEI's vice president and general manager for Materials Science, adds, "This partnership will enable us to develop and refine new multiscale techniques and approaches that will drive the next wave of advancements in metal research and development. The University of Manchester has a well-recognized history in microanalysis and quantification, and we are pleased to embark on this collaboration with them."

For more information, please visit www.fei.com/materials-science/metals/.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enable customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,600 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

About the University of Manchester

The University of Manchester, a member of the prestigious Russell Group of British universities, is the largest and most popular university in the UK. It has 20 academic schools and hundreds of specialist research groups undertaking pioneering multi-disciplinary teaching and research of worldwide significance. According to the results of the 2008 Research Assessment Exercise, The University of Manchester is one of the country’s major research institutions, rated third in the UK in terms of ‘research power’, and has had no fewer than 25 Nobel laureates either work or study there. The University had an annual income of £807 million in 2011/12.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Quanta 3D and Nova NanoLab DualBeams, Titan and Talos TEMs, and Avizo software. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship, deliver and install the tools or software as expected; failure of the product or technology to perform as expected; unexpected technology problems and challenges; changes to the technology; the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results; and the inability of the customer to deploy the tools or develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Automotive/Transportation

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Researchers developed a cost-effective and efficient rival for platinum February 18th, 2015

Leading scholar presents advances in research of electric car batteries at AAAS February 16th, 2015

Aerospace/Space

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Mars Science Laboratory (Curiosity) Rover and Science Team Wins the National Space Society's von Braun Award February 13th, 2015

Research partnerships

European roadmap for graphene science and technology published February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Increasing Efficiency of Cooling Devices in Oil, Gas Industries February 21st, 2015

Perfect colors, captured with one ultra-thin lens: No need for color correction -- Harvard physicists' flat optics, using nanotechnology, get it right the first time February 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE