Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > FEI and University of Manchester Announce Collaboration Agreement for Metals Research

Abstract:
The new Metals Lab involves a multiscale, three-dimensional correlative imaging workflow to better understand and develop metallic alloys for the automotive, aerospace, nuclear, and oil & gas industries.

FEI and University of Manchester Announce Collaboration Agreement for Metals Research

Hillsboro, OR and Manchester, UK | Posted on June 2nd, 2014

FEI (NASDAQ: FEIC) and The University of Manchester announce their collaboration on the Metals Lab at The University of Manchester's Electron Microscopy Centre in the School of Materials. The lab will focus on steels and non-ferrous alloys research in an effort to develop high-performance materials for use in automotive, aerospace, nuclear, oil & gas, and other industrial sectors where advanced metallic alloys play a critical role.

Professor Phil Withers, director of the BP International Centre for Advanced Materials at The University of Manchester, states, "Modern alloys are critically dependent on the role of alloying elements. Whether these are relatively common elements, like chromium in steel to confer corrosion resistance, or rhenium and ruthenium in nickel-base super alloys for high-temperature strength, even small improvements can impact heavily on their economics - especially for the steel industry - where millions of tons of material quickly translate into millions of dollars of extra cost. The ability to confidently reduce, replace, or exploit these alloying elements without a reduction in performance can have huge economic impacts across a range of sectors. With new electron microscopes, software, and the ability to manage multiple, large datasets, we can now positively engage with these demands from industry."

A multiscale, three-dimensional (3D) correlative imaging workflow is applied at the Metals Lab to understand the nature of life-limiting degradation processes over a wide range of spatial scales. MicroCT equipment is used to identify areas of interest (such as cracks or pits), which are then evaluated using the high-resolution Quanta™ 3D and Nova NanoLab™ DualBeam™ focused ion beam (FIB)/scanning electron microscopes (SEMs) and 3D slice and view reconstruction software from FEI. The Titan™ G2 80-200 transmission electron microscope (TEM) with SuperEDX™ is used to provide atomic-scale imaging and compositional analysis, in both 2 and 3D. FEI`s Avizo® software is used to visualize, correlate and combine datasets recorded from this suite of tools. The Talos™ TEM is also installed in the lab for nanoscale materials characterization, while the high performance of the aberration-corrected Titan is used for more advanced research.

The multiscale workflow permits investigations of the root causes of behavior and failure at the atomic scale, while at the same time, ensuring that those small-scale observations accurately represent the structure and composition of the material at larger scales. This ability to characterize the same sample on different length scales is crucial to improve properties like strength, creep, fatigue and corrosion of metals, where these macroscopic properties are linked to microscopic effects down to the atomic scale.

"The need to characterize metals on the nanoscale is pushing the boundaries of current commercial technologies," states Professor Grace Burke, director of the Materials Performance Centre at The University of Manchester. "This workflow from FEI is essential to our continued development and understanding of new materials, namely, the ability to characterize individual structures, particles and their constituent phases, in real time, at the highest sensitivity and spatial resolution."

Trisha Rice, FEI's vice president and general manager for Materials Science, adds, "This partnership will enable us to develop and refine new multiscale techniques and approaches that will drive the next wave of advancements in metal research and development. The University of Manchester has a well-recognized history in microanalysis and quantification, and we are pleased to embark on this collaboration with them."

For more information, please visit www.fei.com/materials-science/metals/.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enable customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,600 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

About the University of Manchester

The University of Manchester, a member of the prestigious Russell Group of British universities, is the largest and most popular university in the UK. It has 20 academic schools and hundreds of specialist research groups undertaking pioneering multi-disciplinary teaching and research of worldwide significance. According to the results of the 2008 Research Assessment Exercise, The University of Manchester is one of the country’s major research institutions, rated third in the UK in terms of ‘research power’, and has had no fewer than 25 Nobel laureates either work or study there. The University had an annual income of £807 million in 2011/12.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Quanta 3D and Nova NanoLab DualBeams, Titan and Talos TEMs, and Avizo software. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship, deliver and install the tools or software as expected; failure of the product or technology to perform as expected; unexpected technology problems and challenges; changes to the technology; the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results; and the inability of the customer to deploy the tools or develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Imaging

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Announcements

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Tools

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Energy

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Aerospace/Space

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Research partnerships

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE