Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breakthrough in energy storage: Electrical cables that can store energy: New nanotech may provide power storage in electric cables, clothes

Jayan Thomas is a professor and scientist at the University of Central Florida.

Credit: UCF
Jayan Thomas is a professor and scientist at the University of Central Florida.

Credit: UCF

Abstract:
Imagine being able to carry all the juice you needed to power your MP3 player, smartphone and electric car in the fabric of your jacket?

Breakthrough in energy storage: Electrical cables that can store energy: New nanotech may provide power storage in electric cables, clothes

Orlando, FL | Posted on June 2nd, 2014

Sounds like science fiction, but it may become a reality thanks to breakthrough technology developed at a University of Central Florida research lab.

So far electrical cables are used only to transmit electricity. However, nanotechnology scientist and professor Jayan Thomas and his Ph.D. student Zenan Yu have developed a way to both transmit and store electricity in a single lightweight copper wire.

Their work is the focus of the cover story of the June 30 issue of the material science journal Advanced Materials and science magazine, Nature has published a detailed discussion about this technology in the current issue.

"It's a very interesting idea," Thomas said. "When we did it and started talking about it, everyone we talked to said, "Hmm, never thought of that. It's unique.'"

Copper wire is the starting point but eventually, Thomas said, as the technology improves, special fibers could also be developed with nanostructures to conduct and store energy.

More immediate applications could be seen in the design and development of electrical vehicles, space-launch vehicles and portable electronic devices. By being able to store and conduct energy on the same wire, heavy, space-consuming batteries could become a thing of the past. It is possible to further miniaturize the electronic devices or the space that has been previously used for batteries could be used for other purposes. In the case of launch vehicles, that could potentially lighten the load, making launches less costly, Thomas said.

So how did he get the idea about energy-storing cables? He was inspired during a routine evening walk in his neighborhood.

Thomas and his team began with a single copper wire. Then they grew a layer of nanowhiskers on the outer surface of the copper wire. These whiskers were then treated with a special alloy, which created an electrode. Two electrodes are needed for the powerful energy storage. So they had to figure out a way to create a second electrode.

They did it- this by adding a very thin plastic sheet around the whiskers and wrapping it around using a metal sheath (the second electrode) after generating nanowhiskers on it (the second electrode and outer covering). The layers were then glued together with a special gel. Because, of the insulationthe nanowhisker layer is insulating, the inner copper wire retains its ability to channel electricity, the layers around the wire independently store powerful energy.

In other words, Thomas and his team created a supercapacitor on the outside of the copper wire. Supercapcitors store powerful energy, like that needed to start a vehicle or heavy-construction equipment.

Although more work needs to be done, Thomas said the technique should be transferable to other types of materials. That could lead to specially treated clothing fibers being able to hold enough power for big tasks. For example, if flexible solar cells and these fibers were used in tandem to make a jacket, it could be used independently to power electronic gadgets and other devices.

"It's very exciting," Thomas said. "We take it step by step. I love getting to the lab everyday, and seeing what we can come up with next. Sometimes things don't work out, but even those failures teach us a lot of things. Still, I know how important getting out of the lab can be too. I won't be giving up those evening walks anytime soon. I get some great ideas during that quiet time."

###

Yu is the co-author of the study. He works in Thomas' Nano Energy-Photonics Group. It conducts research focused primarily on nanostructured supercapacitors and Lithiuim-ion batteries, nanoarchitectured light-trapping solar cells, photorefractive polymers for 3D display applications, and nonlinear optical materials.

Thomas is a faculty member at the UCF Nanoscience Technology Center with joint appointments in the College of Optics and Photonics (CREOL) and the College of Engineering and Computer Science. He has multiple degrees including a master's degree in chemistry and a Ph.D. in material science. He is a recipient of National Science Foundation's prestigious CAREER award. He's received media attention over the past few years for his work on lasers and advanced nanomaterials.

####

About University of Central Florida
America's Partnership University: The University of Central Florida, the nation's second-largest university with nearly 60,000 students, has grown in size, quality, diversity and reputation in its first 50 years. Today, the university offers more than 200 degree programs at its main campus in Orlando and more than a dozen other locations. UCF is an economic engine attracting and supporting industries vital to the region's future while providing students with real-world experiences that help them succeed after graduation. For more information, visit today.ucf.edu.

For more information, please click here

Contacts:
Zenaida Gonzalez Kotala

407-446-6567

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Video:

Related News Press

News and information

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Videos/Movies

Graphene under pressure August 26th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Argonne discovery yields self-healing diamond-like carbon August 7th, 2016

Discoveries

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Announcements

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Textiles/Clothing

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic