Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The quantum mechanisms of organic devices for alternative solar panels are revealed

Photos of the simulation of the evolution in the transfer of charge from the polymer to the fullerene in femtoseconds
Photos of the simulation of the evolution in the transfer of charge from the polymer to the fullerene in femtoseconds

Abstract:
Silicon panel-based technology requires a very costly, contaminating manufacturing process, while organic photovoltaic (OPV) devices have been positioned as one of the most attractive alternatives as a source of solar energy.

The quantum mechanisms of organic devices for alternative solar panels are revealed

Leioa, Spain | Posted on June 1st, 2014

This research has made a ground-breaking discovery because it is the first time that the quantum mechanisms that trigger the photovoltaic function of these devices have been deciphered. Angel Rubio, Professor of Condensed Matter Physics at the Faculty of Chemistry of the UPV/EHU-University of the Basque Country, director of the Nano-Bio Spectroscopy Group, and associate researcher of the Donostia International Physics Center (DIPC), has participated in the research conducted in this field in collaboration with various centres in Germany, Italy and France. The research is being published in the prestigious journal Science.

These organic devices use a photosensitive polymer linked to a carbon nanostructure that functions as a current collector. When light falls on the device, the polymer traps the particles of light and induces the ultrafast transmission of electrons to the nanostructure through an electron impulse in the order of femtoseconds (fs), in other words, 10-15 seconds. Evidence was recently found to confirm this ultrafast transfer, but the research of Rubio and his team has gone a step further because it has succeeded in deciphering the element mechanism that unleashes the electron transfer between the polymer and the nanostructure. The first-principal simulations in a simplified model predicted that the coherent vibrations are the ones that dictate the periodic transfer of charge between the polymer and the fullerene.

The group involved in the experiment confirmed this prediction by studying the optical response of a common material comprising a polymer and a by-product of the fullerene (a conventional nanostructure with a spherical shape) by means of high-resolution temporal spectroscopy.

The results confirmed that the coupling of the vibrations of the polymer and the fullerene bring about the electron transfer in a coherent and ultrafast way (≈23 fs), without any need to accept incoherent processes that are manifested in slower transfers (100 fs). These studies demonstrate the critical role played by quantum coherence in organic photovoltaic devices.

The research, due to be published this week in the prestigious journal Science, offers a vision that is consistent with element quantum processes in organic photovoltaic devices and constitutes a significant step forward in this field. "This research opens up the means for a substantial and controlled improvement in organic devices for photovoltaic applications," pointed out Prof Ángel Rubio.


Full bibliographic information

S. Maria Falke, C.A. Rozzi, D. Brida, M. Amato, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 30 May 2014: Vol. 344 no. 6187 pp. 1001-1005 DOI: 10.1126/science.1249771

####

About University of the Basque Country
The University of the Basque Country is the largest Higher Education Institution in the Basque Country. It is a public, all-inclusive establishment structured in 3 campuses (corresponding to the 3 historical territories of the region) and counts 31 faculties and schools. A total 45,000 students take courses leading to one of our 70 Bachelor´s Degrees or 150 postgraduate programmes. Up to 70 % of all research projects carried out in the Basque Country are developed within our institution. Our constant promotion of age-old Basque language has made it possible for almost all courses to be offered in both official languages (Spanish and Basque), and we are furthermore introducing a number of courses taught in English and French. The Euskampus project, probably the most ambitious our University has ever implemented, was deemed Campus of International Excellence in 2010; the University of the Basque Country aims to become one of the leading European Universities.

For more information, please click here

Contacts:
Matxalen Sotillo

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Discoveries

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Quantum nanoscience

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project