Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rate, Accuracy of Hepatitis B Virus Detection Increased Using Nano-Based Immunosensor

Abstract:
Researchers from the University of Tehran succeeded in designing and producing an immunosensor based on nanotechnology to increase the rate and accuracy of the detection of hepatitis B virus existing in patients' blood serum.

Rate, Accuracy of Hepatitis B Virus Detection Increased Using Nano-Based Immunosensor

Tehran, Iran | Posted on May 26th, 2014

In this research, gold nanoparticles were used to increase the sensitivity of the immunosensor. The sensor is able to detect at least 10 ng/mL of hepatitis B surface antigen.

Results of the research can be used in the production of immunosensors with high quality for the detection of various types of viruses, and the sensors can be used in diagnosis tests in hospitals.

The immunosensor was produced in three phases. At first, the second type antigen was connected to gold nanoparticles. Then, gold nanoparticles were coated by an insulating molecule layer (mercapto alkyl ended to carboxylic acid) through self-arrangement method. Afterwards, carboxylic acid functional groups were chemically activated to connect the antigen to the nanoparticles. The antigen connected to gold nanoparticles and stabilized on the initial antigen formed complex on gold electrodes, and changed the capacity of the capacitor.

Gold nanoparticles were used in this research to increase the sensitivity of the immunosensor, and the secondary antigen was stabilized on the surface of gold nanoparticles.

Due to the large size of the nanoparticles, the secondary antigen connected to gold nanoparticles creates noticeable changes in dielectric layer and the capacity of the capacitor. In addition to increasing the sensitivity, it decreases the detection limit to about 10 ng/mL.

Results of the research have been published in Analytical Methods, vol. 5, issue 17, January 2013, pp. 4448-4453.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE