Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Advanced light: Sending entangled beams through fast-light materials

This image depicts the experimental setup for studying fast light. Pump beams (purple) create correlated probe (turquoise) and conjugate (gold) beams. Each of these beams is aimed at a beam splitter (yellow disks). A local oscillator (LO) also sends a laser beam into each of the beam splitters. The resulting interference pattern -- registered in a spectrum analyzer, SA -- for the probe and conjugate arms are compared.

Credit: NIST
This image depicts the experimental setup for studying fast light. Pump beams (purple) create correlated probe (turquoise) and conjugate (gold) beams. Each of these beams is aimed at a beam splitter (yellow disks). A local oscillator (LO) also sends a laser beam into each of the beam splitters. The resulting interference pattern -- registered in a spectrum analyzer, SA -- for the probe and conjugate arms are compared.

Credit: NIST

Abstract:
Michael Lewis's bestselling book "Flash Boys" describes how some brokers, engaging in high frequency trading, exploit fast telecommunications to gain fraction-of-a-second advantage in the buying and selling of stocks. But you don't need to have billions of dollars riding on this-second securities transactions to appreciate the importance of fast signal processing. From internet to video streaming, we want things fast.

Advanced light: Sending entangled beams through fast-light materials

College Park, MD | Posted on May 25th, 2014

Paul Lett and his colleagues at the Joint Quantum Institute (1) specialize in producing modulated beams of light for encoding information. They haven't found a way to move data faster than c, the speed of light in a vacuum, but in a new experiment they have looked at how light traveling through so called "fast-light" materials does seem to advance faster than c, at least in one limited sense. They report their results (online as of 25 May 2014) in the journal Nature Photonics (2)

Seeing how light can be manipulated in this way requires a look at several key concepts, such as entanglement, mutual information, and anomalous dispersion. At the end we'll arrive at a forefront result.

CONTINUOUS VARIABLE ENTANGLEMENT

Much research at JQI is devoted to the processing of quantum information, information coded in the form of qubits. Qubits, in turn are tiny quantum systems---sometimes electrons trapped in a semiconductor, sometimes atoms or ions held in a trap---maintained in a superposition of states. The utility of qubits increases when two or more of them can be yoked into a larger quantum arrangement, a process called entanglement. Two entangled photons are not really sovereign particles but parts of a single quantum entity.

The basis of entanglement is often a discrete variable, such as electron spin (whose value can be up or down) or photon polarization (say, horizontal or vertical). The essence of entanglement is this: while the polarization of each photon is indeterminate until a measurement is made, once you measure the polarization of one of the pair of entangled photons, you automatically know the other photon's polarization too.

But the mode of entanglement can also be vested in a continuous variable. In Lett's lab, for instance, two whole light beams can be entangled. Here the operative variable is not polarization but phase (how far along in the cycle of the wave you are) or intensity (how many photons are in the beam). For a light beam, phase and intensity are not discrete (up or down) but continuous in variability.

QUANTUM MUTUAL INFORMATION

Biologists examining the un-seamed strands of DNA can (courtesy of the correlated nature of nucleic acid constituents) deduce the sequence of bases along one strand by examining the sequence of the other strand. So it is with entangled beams. A slight fluctuation of the instantaneous intensity of one beam (such fluctuations are inevitable because of the Heisenberg uncertainty principle) will be matched by a comparable fluctuation in the other beam.

Lett and his colleagues make entangled beams in a process called four-wave mixing. A laser beam (pump beam) enters a vapor-filled cell. Here two photons from the pump beam are converted into two daughter photons proceeding onwards with different energies and directions. These photons constitute beams in their own right, one called the probe beam, the other called the conjugate beam. Both of these beams are too weak to measure directly. Instead each beam enters a beam splitter (yellow disk in the drawing below) where its light can be combined with light from a local oscillator (which also serves as a phase reference). The ensuing interference patterns provide aggregate phase or intensity information for the two beams.

When the beam entanglement is perfect, the mutual correlation is 1. When studying the intensity fluctuations of one beam tells you nothing about those of the other beam, then the mutual correlation is 0.

In a famous experiment, Isaac Newton showed how incoming sunlight split apart into a spectrum of colors when it passed through a prism. The degree of wavelength-dependent dispersion for a material that causes this splitting of colors is referred to as its index of refraction.

In most materials the index is larger than 1. For plain window glass, it is about 1.4; for water it is 1.33 for visible light, and gradually increases as the frequency of the light goes up. At much higher frequency (equivalent to shorter wavelength), though, the index can change its value abruptly and go down. For glass, that occurs at ultraviolet wavelengths so you don't ordinarily see this "anomalous dispersion" effect. In a warm vapor of rubidium atoms, however, (and especially when modified with laser light) the effect can occur at infrared wavelengths, and here is where the JQI experiment looks.

In the figure above notice that the conjugate beam is sent through a second cell, filled with rubidium vapor. Here the beam is subject to dispersion. The JQI experiment aims to study how the entanglement of this conjugate beam with the probe beam (subject to no dispersion) holds up.

When the refraction is "normal"---that is, when index of refraction causes ordinary dispersion---the light signal is slowed in comparison with the beam which doesn't undergo dispersion. For this set of conditions, the cell is referred to as a "slow-light" material. When, however, the frequency is just right, the conjugate beam will undergo anomalous dispersion. When the different frequency components that constitute a pulse or intensity fluctuation reformulate themselves as they emerge from the cell, they will now be just slightly ahead of a pulse that hadn't gone through the cell. (To make a proper measurement of delay one needs two entangled beams---beams whose fluctuations are related.)

CAUSALITY

No, the JQI researchers are not saying that any information is traveling faster than c. The figure above shows that the peak for the mutual information for the fast-light-material is indeed ahead of the comparable peaks for an unscattered beam or for a beam emerging from a slow-light material. It turns out that the cost of achieving anomalous dispersion at all has been that additional gain (amplification) is needed, and this amplification imposes noise onto the signal.

This inherent limitation in extracting useful information from an incoming light beam is even more pronounced with beams containing (on average) one or less-than-one photon. Such dilute beams are desirable in many quantum experiments where measurement control or the storage or delay of quantum information is important.

"We did these experiments not to try to violate causality, said Paul Lett, "but because we wanted to see the fundamental way that quantum noise "enforces" causality, and working near the limits of quantum noise also lets us examine the somewhat surprising differences between slow and fast light materials when it comes to the transport of information."

(2) "Quantum Mutual Information after One Half of an Entangled State Propagates through a Dispersive Medium," Jeremy B. Clark, Ryan T. Glasser, Quentin Glorieux, Ulrich Vogl, Tian Li, Kevin M. Jones, Paul D. Lett, Nature Photonics, published online 25 May 2014.

####

About Joint Quantum Institute
The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

For more information, please click here

Contacts:
Phillip F. Schewe

301-405-0989

Paul Lett

(301) 975-6559

Ryan Glasser

Copyright © Joint Quantum Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Quantum Computing

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Materials/Metamaterials

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Photonics/Optics/Lasers

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Quantum nanoscience

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project