Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Easier Bone Treatment by Application of Biocompatible Nanocoating Based on Metallic Alloy

Abstract:
Iranian biomaterials researchers from Isfahan University of Technology produced biocompatible materials based on metallic alloy to modify the properties of materials used in tissue engineering.

Easier Bone Treatment by Application of Biocompatible Nanocoating Based on Metallic Alloy

Tehran, Iran | Posted on May 25th, 2014

The nanostructure is resistant to corrosion and creates acceptable connectivity with bones. Results of the research can be used in medical industries and dentistry.

Ramin Rojayee, one of the researchers, explained the procedure of the research, and said, "Magnesium is one of the vital elements in the treatment of the damaged bone tissue. In recent years, magnesium has been known as the new generation of biodegradable implants. However, the high rate of corrosion in this pure metal in the body of living creatures limited its development and application. Therefore, we tried to control the degradation rate of magnesium in a manner that is in proportion with human body's needs by applying an oxide layer and bioactive glass coating on the base alloy of magnesium."

A combination of nanostructured bilayer coatings has been used in the production of the product. In addition to increasing resistance against corrosion in the substrate sample (magnesium alloy), this method creates more bioactivity and results in better connectivity of the artificial implant with the bone. Cells do not distinguish any difference between the bone and the implant due to the chemical similarity between the surface of bioactive glass used in the coating and the inorganic section of the bone.

To put it in brief, biocompatible materials are appropriate option to substitute today's common orthopedics implants, including stainless steel and chrome/cobalt alloys, since the mentioned alloys can play their role only as supporter for the damaged tissue and they are not able to provide the required inorganic materials for the bone growth.

Results of the research have been published in Ceramics International, vol. 40, issue 6, January 2014, pp. 7879-7888.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Nanomedicine

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

Discoveries

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Announcements

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project