Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne scientists discover new phase in iron-based superconductors

A team of scientists from Argonne National Laboratory discovered a new magnetic phase in iron-based superconductors. From left: Duck-Young Chung, Omar Chmaissem, Stephan Rosenkranz, Daniel Bugaris, Mercouri Kanatzidis, Ray Osborn and Jared Allred. Credit: Photo by Mark Lopez / Argonne National Laboratory.
A team of scientists from Argonne National Laboratory discovered a new magnetic phase in iron-based superconductors. From left: Duck-Young Chung, Omar Chmaissem, Stephan Rosenkranz, Daniel Bugaris, Mercouri Kanatzidis, Ray Osborn and Jared Allred.

Credit: Photo by Mark Lopez / Argonne National Laboratory.

Abstract:
Scientists at the U.S. Department of Energy's Argonne National Laboratory have discovered a previously unknown phase in a class of superconductors called iron arsenides. This sheds light on a debate over the interactions between atoms and electrons that are responsible for their unusual superconductivity.

Argonne scientists discover new phase in iron-based superconductors

Argonne, IL | Posted on May 23rd, 2014

"This new magnetic phase, which has never been observed before, could have significant implications for our understanding of unconventional superconductivity," said Ray Osborn, an Argonne physicist and coauthor on the paper.

Scientists and engineers are fascinated with superconductors because they are capable of carrying electric current without any resistance. This is unique among all conductors: even good ones, like the copper wires used in most power cords, lose energy along the way.

Why don't we use superconductors for every power line in the country, then? Their biggest drawback is that they must be cooled to very, very cold temperatures to work. Also, we do not fully understand how the newest types, called unconventional superconductors, work. Researchers hope that by figuring out the theory behind these superconductors, we could raise the temperature at which they work and harness their power for a wide range of new technologies.

The theory behind older, "conventional" superconductors is fairly well understood. Pairs of electrons, which normally repel each other, instead bind together by distorting the atoms around them and help each other travel through the metal. (In a plain old conductor, these electrons bounce off the atoms, producing heat). In "unconventional" superconductors, the electrons still form pairs, but we don't know what binds them together.

Superconductors are notably finicky; in order to get to the superconducting phase—where electricity flows freely—they need a lot of coddling. The iron arsenides the researchers studied are normally magnetic, but as you add sodium to the mix, the magnetism is suppressed and the materials eventually become superconducting below roughly -400 degrees Fahrenheit.

Magnetic order also affects the atomic structure. At room temperature, the iron atoms sit on a square lattice, which has four-fold symmetry, but when cooled below the magnetic transition temperature, they distort to form a rectangular lattice, with only two-fold symmetry. This is sometimes called "nematic order." It was thought that this nematic order persists until the material becomes superconducting—until this result.

The Argonne team discovered a phase where the material returns to four-fold symmetry, rather than two-fold, close to the onset of superconductivity. (See diagram).

"It is visible using neutron powder diffraction, which is exquisitely sensitive, but which you can only perform at this resolution in a very few places in the world," Osborn said. Neutron powder diffraction reveals both the locations of the atoms and the directions of their microscopic magnetic moments.

The reason why the discovery of the new phase is interesting is that it may help to resolve a long-standing debate about the origin of nematic order. Theorists have been arguing whether it is caused by magnetism or by orbital ordering.

The orbital explanation posits that electrons like to sit in particular d orbitals, driving the lattice into the nematic phase. Magnetic models, on the other hand (developed by study co-authors Ilya Eremin and Andrey Chubukov at the Institut für Theoretische Physik in Germany and the University of Wisconsin-Madison, respectively) suggest that magnetic interactions are what drive the two-fold symmetry—and that they are the key to the superconductivity itself. Perhaps what binds the pairs of electrons together in iron arsenide superconductors is magnetism.

"Orbital theories do not predict a return to four-fold symmetry at this point," Osborn said, "but magnetic models do."

"So far, this effect has only been observed experimentally in these sodium-doped compounds," he said, "but we believe it provides evidence for a magnetic explanation of nematic order in the iron arsenides in general."

It could also affect our understanding of superconductivity in other types of superconductors, such as the copper oxides, where nematic distortions have also been seen, Osborn said.

The paper, titled "Magnetically driven suppression of nematic order in an iron-based superconductor," was published today in Nature Communications.

Other coauthors on the paper were Argonne scientists Sevda Avci (now at Afyon Kocatepe University in Turkey), Omar Chmaissem (a joint appointment with Northern Illinois University), Jared M. Allred, Stephan Rosenkranz, Daniel Bugaris, Duck Young Chung, John-Paul Castellan, John Schlueter, Helmut Claus and Mercouri Kanatzidis (a joint appointment with Northwestern University); and Dmitry Khalyavin, Pascal Manuel and Aziz Daoud-Aladine at the ISIS Pulsed Neutron and Muon Source at the Rutherford Appleton Laboratory in Oxfordshire, U.K.

Funding for the research was provided by the U.S. Department of Energy's Office of Science. The neutron powder diffraction was performed at ISIS.

####

About DOE/Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

For more information, please click here

Contacts:
Jared Sagoff

630-252-5549

Louise Lerner

(630) 252-5526

Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Superconductivity

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Discoveries

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Research partnerships

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE