Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Don't blink! NIST studies why quantum dots suffer from 'fluorescence intermittency'

Abstract:
Researchers at the National Institute of Standards and Technology (NIST), working in collaboration with the Naval Research Laboratory, have found that a particular species of quantum dots that weren't commonly thought to blink, do.

Don't blink! NIST studies why quantum dots suffer from 'fluorescence intermittency'

Gaithersburg, MD | Posted on May 22nd, 2014

So what? Well, although the blinks are short—on the order of nanoseconds to milliseconds—even brief fluctuations can result in efficiency losses that could cause trouble for using quantum dots to generate photons that move information around inside a quantum computer or between nodes of a future high-security internet based on quantum telecommunications.

Beyond demonstrating that the dots are blinking, the team also suggests a possible culprit.*

Scientists have regarded indium arsenide and gallium arsenide (InAs/GaAs) quantum dots to be promising as single photon sources foruse in different future computing and communication systems based on quantum technologies. Compared to other systems, researchers have preferred these quantum dots because they appeared to not blink and because they can be fabricated directly into the types of semiconductor optoelectronics that have been developing over the past few decades.

The NIST research team also thought these quantum dots were emitting steady light perfectly, until they came upon one that was obviously blinking (or was "fluorescently intermittent," in technical terms). They decided to see if they could find others that were blinking in a less obvious way.

While most previous experiments surveyed the dots in bulk, the team tested these dots as they would be used in an actual device. Using an extremely sensitive photon autocorrelation technique to uncover subtle signatures of blinking, they found that the dots blink over timescales rangingfrom tens of nanoseconds to hundreds of milliseconds. Their results suggest that building photonic structures around the quantum dots—something you'd have to do to make many applications viable—may make them significantly less stable as a light source.

"Most of the previous experimental studies of blinking inInAs/GaAs quantum dots looked at their behavior after the dots have been grown but before the surrounding devices have been fabricated," says Kartik Srinivasan, one of the authors of the study. "However, there is no guarantee that a quantum dot will remain non-blinking after the nanofabrication of a surrounding structure, which introduces surfaces and potential defects within 100 nanometers of the quantum dot. We estimate the radiative efficiency of the quantum dots to be between about 50 and 80 percent after the photonic structures are fabricated, significantly less than the 100 percent efficiency that future applications will require."

According to Marcelo Davanço, another author of the study, future work will focus on measuring dots both before and after device fabrication to better assess whether the fabrication is indeed a source of the defects thought to cause the blinking. Ultimately, the authors hope to understand what types of device geometries will avoid blinking while still efficiently funneling the emitted photons into a useful transmission channel, such as an optical fiber.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

The NIST Center for Nanoscale Science and Technology (CNST) is a national nanotechnology user facility that enables innovation by providing rapid access to the tools needed to make and measure nanostructures. Researchers interested in accessing the techniques described here or in collaborating on their future development should contact Kartik Srinivasan.

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*M. Davanço, C. Stephen Hellberg, S. Ates, A. Badolato and K. Srinivasan. Multiple time scale blinking in InAs quantum dot single-photon sources. Phys. Rev. B 89, 161303(R) – Published 16 April 2014:

Related News Press

News and information

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Laboratories

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

News laser design offers more inexpensive multi-color output: Design can control color, intensity of light by varying cavity architecture July 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Optical computing/Photonic computing

A firefly's flash inspires new nanolaser light July 18th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Discoveries

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Announcements

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

Quantum Dots/Rods

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Photonics/Optics/Lasers

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project