Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe

This is a schematic presentation of plasmonic-enhanced two-photon fluorescence of a single emitter inside or outside of an individual gold nanoshell.

Credit: ©Science China Press
This is a schematic presentation of plasmonic-enhanced two-photon fluorescence of a single emitter inside or outside of an individual gold nanoshell.

Credit: ©Science China Press

Abstract:
Two-photon excitation fluorescence is growing in popularity in the bioimaging field but is limited by fluorophores' extremely low two-photon absorption cross-section. The researcher Dr. Guowei Lu and co-workers from State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, are endeavoring to develop efficient fluorescent probes with improved two-photon fluorescence (TPF) performance. They theoretically present a promising bright probe using gold nanoshell to improve the TPF performances of fluorescent emitters. Their work, entitled "Plasmonic-Enhanced Two-Photon Fluorescence with Single Gold Nanoshell", was published in SCIENCE CHINA Physics, Mechanics & Astronomy.2014, Vol 57(6).

Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe

Shenyang, PR China | Posted on May 22nd, 2014

The strategy of using metallic nanoparticles to achieve the TPF enhancement is an appealing scheme so-called metal-enhanced fluorescence. It is based on the coupling of the fluorophores and the plasmonic nanoparticles, resulting in enhanced fluorescence intensity, shortened fluorescence lifetime, and extended photostability. Specifically, the fluorescence enhancement can be optimally controlled through simultaneous efficient coupling between the excitation and emission processes of emitters and the dipolar and quadrupolar modes of the nanoparticles, respectively.

Among various types of metal nanoparticles, metallic nanoshells are especially suitable as the carriers of fluorescent emitters to construct hybrid TPF probes, because their plasmon resonance bands easily span the near-infrared region where biological tissues display minimal autofluorescence and absorption. The nanoshells act as optical antenna enabling the local field enhancement, the increase in radiative decay rate of the fluorophore that alters the quantum efficiency, and modulation of the far-field radiative coupling of fluorescence emission through nanoparticle scattering. Also, the core shell structure offers a perfect platform for designing and fabricating multifunctional nanoparticles.

The Peking University researchers employed the finite-difference time-domain method to systematically evaluate the two-photo fluorescence behavior of single emitter single nanoshell configuration. Simultaneous excitation and emission enhancements could be achieved by the suitable dimensions of the nanoshell. They found that the emitter located inside or outside the nanoshell at various positions led to significantly different enhancement effect. (as shown in the Figure).

The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled, but the TPF enhancement decays rapidly with the increase of distance between the emitter and the shell surface. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations, the radiative light can be coupled efficiently with the far field. Besides, the metal shell protects the encapsulated fluorophores from the external environment. The stability of fluorophores can be improved by the strong coupling between the fluorophores and the nanoshell resulting in a shorter fluorescence lifetime. These considerations imply that fluorophores encapsulated in metallic nanoshells is a more desirable nanocomposite configuration for the TPF probe in bioimaging applications.

This work provides a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

###

The paper's co-authors are Peking University graduate students Zhang Tianyue, Shen Hongming and collaborative scientists Perriat, P.; Martini, M.; Tillement, O. from CNRS, France. This research project was supported by a grant from the National Natural Science Foundation of China and the National Key Basic Research Program of China.

####

For more information, please click here

Contacts:
LU Guowei

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: ZHANG TianYue, LU GuoWei, SHEN HongMing, Perriat P, Martini M, Tillement O, GONG QiHuang. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57 (6): 1038-1045:

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

Photonics/Optics/Lasers

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE