Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe

This is a schematic presentation of plasmonic-enhanced two-photon fluorescence of a single emitter inside or outside of an individual gold nanoshell.

Credit: ©Science China Press
This is a schematic presentation of plasmonic-enhanced two-photon fluorescence of a single emitter inside or outside of an individual gold nanoshell.

Credit: ©Science China Press

Abstract:
Two-photon excitation fluorescence is growing in popularity in the bioimaging field but is limited by fluorophores' extremely low two-photon absorption cross-section. The researcher Dr. Guowei Lu and co-workers from State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, are endeavoring to develop efficient fluorescent probes with improved two-photon fluorescence (TPF) performance. They theoretically present a promising bright probe using gold nanoshell to improve the TPF performances of fluorescent emitters. Their work, entitled "Plasmonic-Enhanced Two-Photon Fluorescence with Single Gold Nanoshell", was published in SCIENCE CHINA Physics, Mechanics & Astronomy.2014, Vol 57(6).

Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe

Shenyang, PR China | Posted on May 22nd, 2014

The strategy of using metallic nanoparticles to achieve the TPF enhancement is an appealing scheme so-called metal-enhanced fluorescence. It is based on the coupling of the fluorophores and the plasmonic nanoparticles, resulting in enhanced fluorescence intensity, shortened fluorescence lifetime, and extended photostability. Specifically, the fluorescence enhancement can be optimally controlled through simultaneous efficient coupling between the excitation and emission processes of emitters and the dipolar and quadrupolar modes of the nanoparticles, respectively.

Among various types of metal nanoparticles, metallic nanoshells are especially suitable as the carriers of fluorescent emitters to construct hybrid TPF probes, because their plasmon resonance bands easily span the near-infrared region where biological tissues display minimal autofluorescence and absorption. The nanoshells act as optical antenna enabling the local field enhancement, the increase in radiative decay rate of the fluorophore that alters the quantum efficiency, and modulation of the far-field radiative coupling of fluorescence emission through nanoparticle scattering. Also, the core shell structure offers a perfect platform for designing and fabricating multifunctional nanoparticles.

The Peking University researchers employed the finite-difference time-domain method to systematically evaluate the two-photo fluorescence behavior of single emitter single nanoshell configuration. Simultaneous excitation and emission enhancements could be achieved by the suitable dimensions of the nanoshell. They found that the emitter located inside or outside the nanoshell at various positions led to significantly different enhancement effect. (as shown in the Figure).

The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled, but the TPF enhancement decays rapidly with the increase of distance between the emitter and the shell surface. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations, the radiative light can be coupled efficiently with the far field. Besides, the metal shell protects the encapsulated fluorophores from the external environment. The stability of fluorophores can be improved by the strong coupling between the fluorophores and the nanoshell resulting in a shorter fluorescence lifetime. These considerations imply that fluorophores encapsulated in metallic nanoshells is a more desirable nanocomposite configuration for the TPF probe in bioimaging applications.

This work provides a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

###

The paper's co-authors are Peking University graduate students Zhang Tianyue, Shen Hongming and collaborative scientists Perriat, P.; Martini, M.; Tillement, O. from CNRS, France. This research project was supported by a grant from the National Natural Science Foundation of China and the National Key Basic Research Program of China.

####

For more information, please click here

Contacts:
LU Guowei

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: ZHANG TianYue, LU GuoWei, SHEN HongMing, Perriat P, Martini M, Tillement O, GONG QiHuang. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57 (6): 1038-1045:

Related News Press

News and information

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Imaging

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Sensors

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Discoveries

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Announcements

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Nanobiotechnology

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

Photonics/Optics/Lasers

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project