Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New lithium battery created in Japan: Using a parasitic conduction mechanism, technology described in the journal 'APL Materials' promises safer batteries in the future

This image shows synthesis of cubic LiBH4 at ambient pressure and Parasitic Conduction Mechanism exhibited in KI - LiBH4 solid solution.

Credit: Hitoshi Takamura/Tohoku Univ.
This image shows synthesis of cubic LiBH4 at ambient pressure and Parasitic Conduction Mechanism exhibited in KI - LiBH4 solid solution.

Credit: Hitoshi Takamura/Tohoku Univ.

Abstract:
The long life of lithium ion batteries makes them the rechargeable of choice for everything from implantable medical devices to wearable consumer electronics. But lithium ion batteries rely on liquid chemistries involving lithium salts dissolved in organic solvents, creating flame risks that would be avoided if the cells were completely solid-state.

New lithium battery created in Japan: Using a parasitic conduction mechanism, technology described in the journal 'APL Materials' promises safer batteries in the future

Washington, DC | Posted on May 20th, 2014

Now a team of researchers at Tohoku University in Japan has created a new type of lithium ion conductor for future batteries that could be the basis for a whole new generation of solid-state batteries. It uses rock salt Lithium Borohydride (LiBH4), a well-known agent in organic chemistry laboratories that has been considered for batteries before, but up to now has only worked at high temperatures or pressures.

In the journal APL Materials, from AIP Publishing, the researchers describe how they doped a cubic lattice of KI molecules with the LiBH4. This allowed them to stabilize the high-pressure form of Lithium borohydride and make a solid solution at normal atmospheric pressure that was stable at room temperature.

In making the new technology, the team made the peculiar discovery that the Li+ ions functioned like pure Li+ ion conductors, even though they were just doping the KI lattices. This is the reverse of the normal doping technique, in which a small amount of stabilizing element would be added to an ionic conductor abundant in Lithium.

"In other words, LiBH4 is a sort of 'parasite' but not a host material," said Hitoshi Takamura who led the research at Tohoku University. He and his colleagues have called this mechanism "parasitic conduction" and have suggested that it could be broadly applied in the search for new batteries -- anywhere that small amounts of Li+ ions could be used to dope an oxide, sulfide, halide or nitride host material.

"This work suggests the potential of this mechanism in the ongoing search for the perfect material for use in solid state batteries," added Takamura. "The urgency of this quest has been abundantly clear after the grounding of so many aircraft in recent months."

####

About American Institute of Physics
APL Materials is a new open access journal featuring original research on significant topical issues within the field of materials science. See: aplmaterials.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article "Synthesis of Rock-Salt Type Lithium Borohydride and Its Peculiar Li+ Ion Conduction Properties" is authored by R. Miyazaki, H. Maekawa and H. Takamura. It will be published in the journal APL Materials on May 20, 2014 (DOI: 10.1063/1.4876638). After that date, it may be accessed at:

Related News Press

News and information

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Discoveries

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Announcements

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Army discovery opens path to safer batteries May 10th, 2019

Self-powered wearable tech May 8th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project