Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Engineers build world's smallest, fastest nanomotor

Abstract:
Researchers at the Cockrell School of Engineering at The University of Texas at Austin have built the smallest, fastest and longest-running tiny synthetic motor to date. The team's nanomotor is an important step toward developing miniature machines that could one day move through the body to administer insulin for diabetics when needed, or target and treat cancer cells without harming good cells.

Engineers build world's smallest, fastest nanomotor

Austin, TX | Posted on May 20th, 2014

With the goal of powering these yet-to-be invented devices, UT Austin engineers focused on building a reliable, ultra-high-speed nanomotor that can convert electrical energy into mechanical motion on a scale 500 times smaller than a grain of salt.

Mechanical engineering assistant professor Donglei "Emma" Fan led a team of researchers in the successful design, assembly and testing of a high-performing nanomotor in a nonbiological setting. The team's three-part nanomotor can rapidly mix and pump biochemicals and move through liquids, which is important for future applications. The team's study was published in the April issue of Nature Communications.

Fan and her team are the first to achieve the extremely difficult goal of designing a nanomotor with large driving power.

With all its dimensions under 1 micrometer in size, the nanomotor could fit inside a human cell and is capable of rotating for 15 continuous hours at a speed of 18,000 RPMs, the speed of a motor in a jet airplane engine. Comparable nanomotors run significantly more slowly, from 14 RPMs to 500 RPMs, and have only rotated for a few seconds up to a few minutes.

Looking forward, nanomotors could advance the field of nanoelectromechanical systems (NEMS), an area focused on developing miniature machines that are more energy efficient and less expensive to produce. In the near future, the Cockrell School researchers believe their nanomotors could provide a new approach to controlled biochemical drug delivery to live cells.

To test its ability to release drugs, the researchers coated the nanomotor's surface with biochemicals and initiated spinning. They found that the faster the nanomotor rotated, the faster it released the drugs.

"We were able to establish and control the molecule release rate by mechanical rotation, which means our nanomotor is the first of its kind for controlling the release of drugs from the surface of nanoparticles," Fan said. "We believe it will help advance the study of drug delivery and cell-to-cell communications."

The researchers address two major issues for nanomotors so far: assembly and controls. The team built and operated the nanomotor using a patent-pending technique that Fan invented while studying at Johns Hopkins University. The technique relies on AC and DC electric fields to assemble the nanomotor's parts one by one.

In experiments, the researchers used the technique to turn the nanomotors on and off and propel the rotation either clockwise or counterclockwise. The researchers found that they could position the nanomotors in a pattern and move them in a synchronized fashion, which makes them more powerful and gives them more flexibility.

Fan and her team plan to develop new mechanical controls and chemical sensing that can be integrated into nanoelectromechanical devices. But first they plan to test their nanomotors near a live cell, which will allow Fan to measure how they deliver molecules in a controlled fashion.

###

Cockrell School graduate students Kwanoh Kim, Xiaobin Xu and Jianhe Guo co-authored the study. The National Science Foundation Career Award, the Welch Foundation and startup funds from the Cockrell School supported the study.

All UT investigators involved with this research have filed their required financial disclosure forms with the university. Kwanoh Kim, Xiaobin Xu and Jianhe Guo have not received any funding for any other study or work outside of university appointments during the past 12 months. Donglei "Emma" Fan has worked on projects sponsored by the Welch Foundation and government agencies including the National Science Foundation and the National Institutes of Health.

####

For more information, please click here

Contacts:
Sandra Zaragoza
512-471-2129

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - Texas Engineers Build World's Smallest, Fastest Nanomotor:

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Molecular Nanotechnology

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project