Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Develop Highly Efficient Nanoadsorbents to Remove Heavy Metals from Wastewater

Abstract:
Iranian researchers from Sharif University of Technology used nanotechnology to produce highly efficient adsorbents to remove heavy metals from industrial wastewater.

Researchers Develop Highly Efficient Nanoadsorbents to Remove Heavy Metals from Wastewater

Tehran, Iran | Posted on May 19th, 2014

This invention is a big step towards the application of various nanomaterials in water purification process.

The size of particles in the produced nanoadsorbent is 20 nm, which is completely suitable for the removal of nickel, cobalt and barium ions from water. Small amount of the nanoadsorbent can be used in the process of removing the heavy metals since its efficiency is high. Therefore, it results in decreasing the operational costs. The researchers also presented a correlation that expresses the kinetics of the reaction by taking into consideration various parameters effective on the sorption efficiency.

According to the researchers, zeolite is one of the most promising materials among various inorganic adsorbents to carry out metal purification process. Low cost is the advantage of zeolite in comparison with various types of resins. The adsorbent was produced by depositing platinum nanoparticles on a bed of Zeolite A4.

Surface sorption was used in the removal of metallic ions by using the nanoadsorbent. The process is cheaper than other separation processes such as fractional distillation or extraction. On the other hand and contrary to some of separation methods, including solvent extraction, surface sorption in fixed beds is a direct separation method that does not need any supplementary process.

Results of the research showed that the amount of sorption increases as the amount of adsorbent increases. In other words, contact area between the particles and the adsorbent increases and more ions have the opportunity to deposit on the surface of the adsorbent. Increase in the temperature boosts sorption yield too. The efficiency of the nanoadsorbent is higher in acidic media.

Results of the research have been published in Journal of Environmental Health Science & Engineering, vol. 12, issue 1, January 2014, pp. 1-7.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Discoveries

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Environment

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

FLEXcon shares insights on developments and safety guidelines in nanotechnology: FLEXcon hosted New England Nanotechnology Association event, discussing latest industry activities and innovations January 25th, 2016

Highly efficient heavy metal ions filter January 25th, 2016

Water

Highly efficient heavy metal ions filter January 25th, 2016

Louisiana Tech University student coauthors research in ACS journal January 15th, 2016

Coated Magnetic Nanoparticles Used to Purify Contaminated Water December 28th, 2015

Photocatalytic Nanostructures Show Ability to Purify Wastewater December 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic