Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Liberating devices from their power cords

Close-up of structural supercapacitor. Joe Howell / Vanderbilt
Close-up of structural supercapacitor.

Joe Howell / Vanderbilt

Abstract:
Imagine a future in which our electrical gadgets are no longer limited by plugs and external power sources.

This intriguing prospect is one of the reasons for the current interest in building the capacity to store electrical energy directly into a wide range of products, such as a laptop whose casing serves as its battery, or an electric car powered by energy stored in its chassis, or a home where the dry wall and siding store the electricity that runs the lights and appliances.

Liberating devices from their power cords

Nashville, TN | Posted on May 19th, 2014

It also makes the small, dull grey wafers that graduate student Andrew Westover and Assistant Professor of Mechanical Engineering Cary Pint have made in Vanderbilt's Nanomaterials and Energy Devices Laboratory far more important than their nondescript appearance suggests.

"These devices demonstrate - for the first time as far as we can tell - that it is possible to create materials that can store and discharge significant amounts of electricity while they are subject to realistic static loads and dynamic forces, such as vibrations or impacts," said Pint. "Andrew has managed to make our dream of structural energy storage materials into a reality."

That is important because structural energy storage will change the way in which a wide variety of technologies are developed in the future. "When you can integrate energy into the components used to build systems, it opens the door to a whole new world of technological possibilities. All of a sudden, the ability to design technologies at the basis of health, entertainment, travel and social communication will not be limited by plugs and external power sources," Pint said.

The new device that Pint and Westover has developed is a supercapacitor that stores electricity by assembling electrically charged ions on the surface of a porous material, instead of storing it in chemical reactions the way batteries do. As a result, supercaps can charge and discharge in minutes, instead of hours, and operate for millions of cycles, instead of thousands of cycles like batteries.

In a paper appearing online May 19 in the journal Nano Letters, Pint and Westover report that their new structural supercapacitor operates flawlessly in storing and releasing electrical charge while subject to stresses or pressures up to 44 psi and vibrational accelerations over 80 g (significantly greater than those acting on turbine blades in a jet engine).

Furthermore, the mechanical robustness of the device doesn't compromise its energy storage capability. "In an unpackaged, structurally integrated state our supercapacitor can store more energy and operate at higher voltages than a packaged, off-the-shelf commercial supercapacitor, even under intense dynamic and static forces," Pint said.

One area where supercapacitors lag behind batteries is in electrical energy storage capability: Supercaps must be larger and heavier to store the same amount of energy as lithium-ion batteries. However, the difference is not as important when considering multifunctional energy storage systems.

"Battery performance metrics change when you're putting energy storage into heavy materials that are already needed for structural integrity," said Pint. "Supercapacitors store ten times less energy than current lithium-ion batteries, but they can last a thousand times longer. That means they are better suited for structural applications. It doesn't make sense to develop materials to build a home, car chassis, or aerospace vehicle if you have to replace them every few years because they go dead."

Westover's wafers consist of electrodes made from silicon that have been chemically treated so they have nanoscale pores on their inner surfaces and then coated with a protective ultrathin graphene-like layer of carbon. Sandwiched between the two electrodes is a polymer film that acts as a reservoir of charged ions, similar to the role of the electrolyte paste in a battery. When the electrodes are pressed together, the polymer oozes into the tiny pores in much the same way that melted cheese soaks into the nooks and crannies of artisan bread in a panini. When the polymer cools and solidifies, it forms an extremely strong mechanical bond.

"The biggest problem with designing load-bearing supercaps is preventing them from delaminating," said Westover. "Combining nanoporous material with the polymer electrolyte bonds the layers together tighter than superglue."

The use of silicon in structural supercapacitors is best suited for consumer electronics and solar cells, but Pint and Westover are confident that the rules that govern the load-bearing character of their design will carry over to other materials, such as carbon nanotubes and lightweight porous metals like aluminum.

The intensity of interest in "multifunctional" devices of this sort is reflected by the fact that the U.S. Department of Energy's Advanced Research Project Agency for Energy is investing $8.7 million in research projects that focus specifically on incorporating energy storage into structural materials. There have also been recent press reports of several major efforts to develop multifunctional materials or structural batteries for use in electric vehicles and for military applications. However, Pint pointed out that there have not been any reports in the technical literature of tests performed on structural energy storage materials that show how they function under realistic mechanical loads.

Amrutur Anilkumar, professor of the practice in mechanical engineering, postdoctoral associate Shahana Chatterjee, graduate student Landon Oakes, undergraduate mechanical engineering majors John Tian, Shivaprem Bernath and Farhan Nur Shabab and high school student Rob Edwards collaborated in the project.

The research was supported by National Science Foundation grants CMMI 1334269 and EPS 104083. Materials fabrication was conducted in part at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory that is supported by the Office of Basic Energy Sciences of the U.S. Department of Energy.

####

For more information, please click here

Contacts:
David Salisbury

615-343-6803

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Laboratories

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale February 25th, 2019

A quantum magnet with a topological twist: Materials with a kagome lattice pattern exhibit 'negative magnetism' and long-sought 'flat-band' electrons February 23rd, 2019

Helping smartphones hold their charge longer February 6th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

Straightforward biosynthesis of functional bulk nanocomposites February 5th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chemical synthesis of nanotubes: Nanometer-sized tubes made from simple benzene molecules January 11th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Energy

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale February 25th, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Solar/Photovoltaic

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Self-assembling nanomaterial offers pathway to more efficient, affordable harnessing of solar power: The new materials produce a singlet fission reaction that creates more and extends the life of harvestable electronic charges January 24th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project