Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanowire-bridging transistors open way to next-generation electronics (VIDEO)

Abstract:
A new approach to integrated circuits, combining atoms of semiconductor materials into nanowires and structures on top of silicon surfaces, shows promise for a new generation of fast, robust electronic and photonic devices. Engineers at the University of California, Davis, have recently demonstrated three-dimensional nanowire transistors using this approach that open exciting opportunities for integrating other semiconductors, such as gallium nitride, on silicon substrates.



Nanowires Grown on Silicon

Nanowire-bridging transistors open way to next-generation electronics (VIDEO)

Davis, CA | Posted on May 15th, 2014

"Silicon can't do everything," said Saif Islam, professor of electrical and computer engineering at UC Davis. Circuits built on conventionally etched silicon have reached their lower size limit, which restricts operation speed and integration density. Additionally, conventional silicon circuits cannot function at temperatures above 250 degrees Celsius (about 480 degrees Fahrenheit), or handle high power or voltages, or optical applications.

The new technology could be used, for example, to build sensors that can operate under high temperatures, for example inside aircraft engines.

"In the foreseeable future, society will be dependent on a variety of sensors and control systems that operate in extreme environments, such as motor vehicles, boats, airplanes, terrestrial oil and ore extraction, rockets, spacecraft, and bodily implants," Islam said.

Devices that include both silicon and nonsilicon materials offer higher speeds and more robust performance. Conventional microcircuits are formed from etched layers of silicon and insulators, but it's difficult to grow nonsilicon materials as layers over silicon because of incompatibilities in crystal structure (or "lattice mismatch") and differences in thermal properties.

Instead, Islam's laboratory at UC Davis has created silicon wafers with "nanopillars" of materials such as gallium arsenide, gallium nitride or indium phosphide on them, and grown tiny nanowire "bridges" between nanopillars.

"We can't grow films of these other materials on silicon, but we can grow them as nanowires," Islam said.

The researchers have been able to make these nanowires operate as transistors, and combine them into more complex circuits as well as devices that are responsive to light. They have developed techniques to control the number of nanowires, their physical characteristics and consistency.

Islam said the suspended structures have other advantages: They are easier to cool and handle thermal expansion better than planar structures — a relevant issue when mismatched materials are combined in a transistor.

The technology also leverages the well-established technology for manufacturing silicon integrated circuits, instead of having to create an entirely new route for manufacturing and distribution, Islam said.

The work is described in a series of recent papers in the journals Advanced Materials, Applied Physics Letters and IEEE Transactions on Nanotechnology with co-authors Jin Yong Oh at UC Davis; Jong-Tae Park, University of Incheon, South Korea; Hyun-June Jang and Won-Ju Cho, Kwangwoon University, South Korea. Funding was provided by the U.S. National Science Foundation and the government of South Korea.

####

About University of California - Davis
UC Davis is a global community of individuals united to better humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the California state capital, UC Davis has more than 34,000 students, and the full-time equivalent of 4,100 faculty and other academics and 17,400 staff. The campus has an annual research budget of over $750 million, a comprehensive health system and about two dozen specialized research centers. The university offers interdisciplinary graduate study and 99 undergraduate majors in four colleges and six professional schools.

For more information, please click here

Contacts:
Andy Fell

530-752-4533

Saif Islam
Electrical and Computer Engineering
(530) 754-6732

Copyright © University of California - Davis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Saif Islam's website:

Related News Press

News and information

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Videos/Movies

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Chip Technology

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Nanoelectronics

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Discoveries

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Announcements

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Research partnerships

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project