Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Advance brings 'hyperbolic metamaterials' closer to reality

"Hyperbolic metamaterials" could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells. The graphic at left depicts a metamaterial's "hyperbolic dispersion" of light. At center is a high-resolution transmission electron microscope image showing the interface of titanium nitride and aluminum scandium nitride in a "superlattice" that is promising for potential applications. At right are two images created using a method called fast Fourier transform to see individual layers in the material. Purdue University image
"Hyperbolic metamaterials" could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells. The graphic at left depicts a metamaterial's "hyperbolic dispersion" of light. At center is a high-resolution transmission electron microscope image showing the interface of titanium nitride and aluminum scandium nitride in a "superlattice" that is promising for potential applications. At right are two images created using a method called fast Fourier transform to see individual layers in the material.

Purdue University image

Abstract:
Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

Gururaj V. Naik,1 Bivas Saha,2 Jing Liu,3 Sammy M. Saber,2 Eric Stach,2 Joseph MK Irudayaraj,3 Timothy D. Sands,1,2 Vladimir M. Shalaev1 and Alexandra Boltasseva*,1,4

1 School of Electrical and Computer Engineering, and Birck Nanotechnology Center, Purdue

University

2 School of Materials Engineering, and Birck Nanotechnology Center, Purdue University

3 Department of Agricultural and Biological Engineering, and Bindley Bioscience Center,

Purdue University

4 DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark CORRESPONDING AUTHOR: *Alexandra Boltasseva

Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold however, TiN is CMOS-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN can be grown in smooth, ultra-thin crystalline films, which are useful in constructing many plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). Hyperbolic metamaterials have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonics applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultra-smooth layers as thin as 5 nm and exhibits sharp interfaces, which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs. Given the advantages of TiN as a CMOS compatible plasmonic material, this demonstration brings a paradigm shift to the field of metamaterials similar to the way heterostructures did to the field of solid-state light sources.

Advance brings 'hyperbolic metamaterials' closer to reality

West Lafayette, IN | Posted on May 15th, 2014

Researchers have taken a step toward practical applications for "hyperbolic metamaterials," ultra-thin crystalline films that could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells.

New developments are reminiscent of advances that ushered in silicon chip technology, said Alexandra Boltasseva, a Purdue University associate professor of electrical and computer engineering.

Optical metamaterials harness clouds of electrons called surface plasmons to manipulate and control light. However, some of the plasmonic components under development rely on the use of metals such as gold and silver, which are incompatible with the complementary metal-oxide-semiconductor (CMOS) manufacturing process used to construct integrated circuits and do not transmit light efficiently.

Now researchers have shown how to create "superlattice" crystals from layers of the metal titanium nitride and aluminum scandium nitride, a dielectric, or insulator. Superlattices are crystals that can be grown continuously by adding new layers, a requirement for practical application.

"This work is a very important step in terms of fundamental contributions in materials science and optics as well as paving the way to some interesting applications," Boltasseva said. "We believe this demonstration brings a paradigm shift to the field of metamaterials similar to developments that led to dramatic advances in silicon technology."

Research findings are detailed in a paper appearing this week in the online Early Edition of Proceedings of the National Academy of Sciences.

Researchers created the superlattices using a method called epitaxy, "growing" the layers inside a vacuum chamber with a technique known as magnetron sputtering. It is difficult to use the technique to create structures that have sharply defined, ultra-thin and ultra-smooth layers of two different materials.

"This is one of the first reports of a metal-dielectric epitaxial superlattice," said Purdue doctoral student Bivas Saha, co-lead author of the PNAS paper with Gururaj V. Naik, a former Purdue doctoral student and now a postdoctoral scholar at Stanford University.

The list of possible applications for metamaterials includes a "planar hyperlens" that could make optical microscopes 10 times more powerful and able to see objects as small as DNA, advanced sensors, more efficient solar collectors, and quantum computing.

"Plasmonic and metamaterial devices require good material building blocks, both plasmonic and dielectric, in order to be useful in any real-world application," Boltasseva said. "Here, we develop both plasmonic and dielectric materials that can be grown epitaxially into ultra-thin and ultra-smooth layers with sharp interfaces."

Metamaterials have engineered surfaces that contain features, patterns or elements, such as tiny antennas or alternating layers of nitrides that enable unprecedented control of light. Under development for about 15 years, the metamaterials owe their unusual potential to precision design on the scale of nanometers.

The PNAS paper was authored by Naik; Saha; doctoral students Jing Liu and Sammy M. Saber; Eric Stach, a researcher at Brookhaven National Laboratory; Joseph Irudayaraj, a professor in Purdue's Department of Agricultural and Biological Engineering; Timothy D. Sands, executive vice president for academic affairs and provost and Basil S. Turner Professor of Engineering in the Schools of Materials Engineering and Electrical and Computer Engineering; Vladimir M. Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering; and Boltasseva.

"This work results from a unique collaboration between nanophotonics and materials science," Boltasseva said.

The hyperbolic metamaterial behaves as a metal when light is passing through it in one direction and like a dielectric in the perpendicular direction. This "extreme anisotropy" leads to "hyperbolic dispersion" of light and the ability to extract many more photons from devices than otherwise possible, resulting in high performance.

The layers of titanium nitride and aluminum scandium nitride used in this study are each about 5 to 20 nanometers thick. However, researchers have demonstrated that such superlattices can also be developed where the layers could be as thin as 2 nanometers, a tiny dimension only about eight atoms thick.

"People have tried for more than 50 years to combine metals and semiconductors with atomic-scale precision to build superlattices," Saha said. "However, this is one of the first demonstrations of achieving that step. The fascinating optical properties we see here are a manifestation of extraordinary structural control that we have achieved."

The feat is possible by choosing a metal and dielectric with compatible crystal structures, enabling the layers to grow together as a superlattice. The researchers alloyed aluminum nitride with scandium nitride, meaning the aluminum nitride is impregnated with scandium atoms to alter the material's crystal lattice to match titanium nitride's.

"The possibility of growing both metal and dielectric material components as a whole epitaxial system is indispensable for realizing high-performance metamaterials," Saha said. "One of the stumbling blocks is the fact that common dielectrics such as silica, alumina and other oxides cannot be used in combination with metallic components such as metal nitrides because the deposition processes are not compatible with each other."

Both of the materials should possess the same or compatible crystal structures.

"In general, a lattice mismatch of less than 5 percent is necessary for growing epitaxial quality films," he said.

A U.S. patent application has been filed through the Purdue Office of Technology Commercialization.

The material has been shown to work in a broad spectrum from near-infrared to visible light, potentially promising a wide array of applications.

"That's a novel part of this work - that we can create a superlattice metamaterial showing hyperbolic dispersion in the visible spectrum range," Boltasseva said.

The near-infrared is essential for telecommunications and optical communications, and visible light is important for sensors, microscopes and efficient solid-state light sources.

"Most interesting is the realm of quantum information technology," she said.

Computers based on quantum physics would have quantum bits, or "qubits," that exist in both the on and off states simultaneously, dramatically increasing the computer's power and memory. Quantum computers would take advantage of a phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero used in conventional computer processing, there are many possible "entangled quantum states" in between one and zero, increasing the capacity to process information.

The research has been funded in part by the U.S. Army Research Office and the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere

765-494-4709

Sources:
Alexandra Boltasseva
765-494-0301


Bivas Saha

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Imaging

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Thin films

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Quantum Computing

Developing reliable quantum computers February 22nd, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Quantum algorithm could help AI think faster: Researchers in Singapore, Switzerland and the UK present a quantum speed-up for machine learning February 2nd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Tools

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Patents/IP/Tech Transfer/Licensing

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Military

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Photonics/Optics/Lasers

Basque researchers turn light upside down February 23rd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Quantum nanoscience

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project