Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Advance brings 'hyperbolic metamaterials' closer to reality

"Hyperbolic metamaterials" could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells. The graphic at left depicts a metamaterial's "hyperbolic dispersion" of light. At center is a high-resolution transmission electron microscope image showing the interface of titanium nitride and aluminum scandium nitride in a "superlattice" that is promising for potential applications. At right are two images created using a method called fast Fourier transform to see individual layers in the material. Purdue University image
"Hyperbolic metamaterials" could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells. The graphic at left depicts a metamaterial's "hyperbolic dispersion" of light. At center is a high-resolution transmission electron microscope image showing the interface of titanium nitride and aluminum scandium nitride in a "superlattice" that is promising for potential applications. At right are two images created using a method called fast Fourier transform to see individual layers in the material.

Purdue University image

Abstract:
Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

Gururaj V. Naik,1 Bivas Saha,2 Jing Liu,3 Sammy M. Saber,2 Eric Stach,2 Joseph MK Irudayaraj,3 Timothy D. Sands,1,2 Vladimir M. Shalaev1 and Alexandra Boltasseva*,1,4

1 School of Electrical and Computer Engineering, and Birck Nanotechnology Center, Purdue

University

2 School of Materials Engineering, and Birck Nanotechnology Center, Purdue University

3 Department of Agricultural and Biological Engineering, and Bindley Bioscience Center,

Purdue University

4 DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark CORRESPONDING AUTHOR: *Alexandra Boltasseva

Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold however, TiN is CMOS-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN can be grown in smooth, ultra-thin crystalline films, which are useful in constructing many plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). Hyperbolic metamaterials have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonics applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultra-smooth layers as thin as 5 nm and exhibits sharp interfaces, which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs. Given the advantages of TiN as a CMOS compatible plasmonic material, this demonstration brings a paradigm shift to the field of metamaterials similar to the way heterostructures did to the field of solid-state light sources.

Advance brings 'hyperbolic metamaterials' closer to reality

West Lafayette, IN | Posted on May 15th, 2014

Researchers have taken a step toward practical applications for "hyperbolic metamaterials," ultra-thin crystalline films that could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells.

New developments are reminiscent of advances that ushered in silicon chip technology, said Alexandra Boltasseva, a Purdue University associate professor of electrical and computer engineering.

Optical metamaterials harness clouds of electrons called surface plasmons to manipulate and control light. However, some of the plasmonic components under development rely on the use of metals such as gold and silver, which are incompatible with the complementary metal-oxide-semiconductor (CMOS) manufacturing process used to construct integrated circuits and do not transmit light efficiently.

Now researchers have shown how to create "superlattice" crystals from layers of the metal titanium nitride and aluminum scandium nitride, a dielectric, or insulator. Superlattices are crystals that can be grown continuously by adding new layers, a requirement for practical application.

"This work is a very important step in terms of fundamental contributions in materials science and optics as well as paving the way to some interesting applications," Boltasseva said. "We believe this demonstration brings a paradigm shift to the field of metamaterials similar to developments that led to dramatic advances in silicon technology."

Research findings are detailed in a paper appearing this week in the online Early Edition of Proceedings of the National Academy of Sciences.

Researchers created the superlattices using a method called epitaxy, "growing" the layers inside a vacuum chamber with a technique known as magnetron sputtering. It is difficult to use the technique to create structures that have sharply defined, ultra-thin and ultra-smooth layers of two different materials.

"This is one of the first reports of a metal-dielectric epitaxial superlattice," said Purdue doctoral student Bivas Saha, co-lead author of the PNAS paper with Gururaj V. Naik, a former Purdue doctoral student and now a postdoctoral scholar at Stanford University.

The list of possible applications for metamaterials includes a "planar hyperlens" that could make optical microscopes 10 times more powerful and able to see objects as small as DNA, advanced sensors, more efficient solar collectors, and quantum computing.

"Plasmonic and metamaterial devices require good material building blocks, both plasmonic and dielectric, in order to be useful in any real-world application," Boltasseva said. "Here, we develop both plasmonic and dielectric materials that can be grown epitaxially into ultra-thin and ultra-smooth layers with sharp interfaces."

Metamaterials have engineered surfaces that contain features, patterns or elements, such as tiny antennas or alternating layers of nitrides that enable unprecedented control of light. Under development for about 15 years, the metamaterials owe their unusual potential to precision design on the scale of nanometers.

The PNAS paper was authored by Naik; Saha; doctoral students Jing Liu and Sammy M. Saber; Eric Stach, a researcher at Brookhaven National Laboratory; Joseph Irudayaraj, a professor in Purdue's Department of Agricultural and Biological Engineering; Timothy D. Sands, executive vice president for academic affairs and provost and Basil S. Turner Professor of Engineering in the Schools of Materials Engineering and Electrical and Computer Engineering; Vladimir M. Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering; and Boltasseva.

"This work results from a unique collaboration between nanophotonics and materials science," Boltasseva said.

The hyperbolic metamaterial behaves as a metal when light is passing through it in one direction and like a dielectric in the perpendicular direction. This "extreme anisotropy" leads to "hyperbolic dispersion" of light and the ability to extract many more photons from devices than otherwise possible, resulting in high performance.

The layers of titanium nitride and aluminum scandium nitride used in this study are each about 5 to 20 nanometers thick. However, researchers have demonstrated that such superlattices can also be developed where the layers could be as thin as 2 nanometers, a tiny dimension only about eight atoms thick.

"People have tried for more than 50 years to combine metals and semiconductors with atomic-scale precision to build superlattices," Saha said. "However, this is one of the first demonstrations of achieving that step. The fascinating optical properties we see here are a manifestation of extraordinary structural control that we have achieved."

The feat is possible by choosing a metal and dielectric with compatible crystal structures, enabling the layers to grow together as a superlattice. The researchers alloyed aluminum nitride with scandium nitride, meaning the aluminum nitride is impregnated with scandium atoms to alter the material's crystal lattice to match titanium nitride's.

"The possibility of growing both metal and dielectric material components as a whole epitaxial system is indispensable for realizing high-performance metamaterials," Saha said. "One of the stumbling blocks is the fact that common dielectrics such as silica, alumina and other oxides cannot be used in combination with metallic components such as metal nitrides because the deposition processes are not compatible with each other."

Both of the materials should possess the same or compatible crystal structures.

"In general, a lattice mismatch of less than 5 percent is necessary for growing epitaxial quality films," he said.

A U.S. patent application has been filed through the Purdue Office of Technology Commercialization.

The material has been shown to work in a broad spectrum from near-infrared to visible light, potentially promising a wide array of applications.

"That's a novel part of this work - that we can create a superlattice metamaterial showing hyperbolic dispersion in the visible spectrum range," Boltasseva said.

The near-infrared is essential for telecommunications and optical communications, and visible light is important for sensors, microscopes and efficient solid-state light sources.

"Most interesting is the realm of quantum information technology," she said.

Computers based on quantum physics would have quantum bits, or "qubits," that exist in both the on and off states simultaneously, dramatically increasing the computer's power and memory. Quantum computers would take advantage of a phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero used in conventional computer processing, there are many possible "entangled quantum states" in between one and zero, increasing the capacity to process information.

The research has been funded in part by the U.S. Army Research Office and the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere

765-494-4709

Sources:
Alexandra Boltasseva
765-494-0301


Bivas Saha

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Imaging

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

Self-assembling nanoparticle could improve MRI scanning for cancer diagnosis: Scientists have designed a new self-assembling nanoparticle that targets tumours, to help doctors diagnose cancer earlier July 16th, 2014

Thin films

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Even geckos can lose their grip July 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Quantum Computing

Harris & Harris Group Portfolio Company D-Wave Systems Closes a $28.4 Million Financing July 14th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

From pencil marks to quantum computers: Introducing graphene July 5th, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Materials/Metamaterials

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Tools

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Patents/IP/Tech Transfer/Licensing

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Military

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Photonics/Optics/Lasers

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

Quantum nanoscience

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation June 29th, 2014

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits June 24th, 2014

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies June 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE