Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Iranian researchers produced a new nanodrug as contrast-increasing agent for target-imaging of breast cancer

May 8th, 2014

Iranian researchers produced a new nanodrug as contrast-increasing agent for target-imaging of breast cancer

Abstract:
Iranian researchers from Gilan University and Islamic Azad University, Zanjan Branch, produced a new nanodrug as contrast-increasing agent for target-imaging of breast cancer.

Story:
The nanodrug enables early diagnosis of breast cancer tissue and the treatment of the disease.

The nanodrug has high efficiency and it possesses noticeable optical stability in blood. The results showed that the nanodrug is nontoxic on cell cultivation conditions. Results of the research have proved the high potential of the product at animal model level.

According to the results obtained in this research, the produced nanodrug is very powerful in targeting breast cancer cells. The drug is highly absorbed by cancer cells, and the rate of absorption increases as time goes on. It can be concluded from life distribution results that the compound has the power to target breast cancer cells on in vivo conditions, and it can be used as a targeting nanodrug in imaging of breast cancer.

Gold nanorods have very high absorbance, and their sorption spectrum is adjustable at any wavelength inside the infrared domain. On the other hand, radiation of infrared does not harm healthy tissues. When gold nanorods receive the beam inside the tissues, they effectively convert the beam into heat, and miniature explosions begin. Therefore, they act as distinguishing agent in photo-acoustic imaging.

Results of the research have been published in Journal of Photochemistry and Photobiology B: Biology, vol. 130, issue 1, January 2014, pp. 40-46.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanomedicine

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project