Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoengineers Develop Basis for Electronics That Stretch at the Molecular Level

Abstract:
Nanoengineers at the University of California, San Diego are asking what might be possible if semiconductor materials were flexible and stretchable without sacrificing electronic function?

Nanoengineers Develop Basis for Electronics That Stretch at the Molecular Level

San Diego, CA | Posted on May 8th, 2014

Today's flexible electronics are already enabling a new generation of wearable sensors and other mobile electronic devices. But these flexible electronics, in which very thin semiconductor materials are applied to a thin, flexible substrate in wavy patterns and then applied to a deformable surface such as skin or fabric, are still built around hard composite materials that limit their elasticity.

Writing in the journal Chemistry of Materials, UC San Diego Jacobs School of Engineering professor Darren Lipomi reports on several new discoveries by his team that could lead to electronics that are "molecularly stretchable."

Lipomi compared the difference between flexible and stretchable electronics to what would happen if you tried to wrap a basketball with either a sheet of paper or a thin sheet of rubber. The paper would wrinkle, while the rubber would conform to the surface of the ball.

"We are developing the design rules for a new generation of plastic--or, better, rubber--electronics for applications in energy, biomedical devices, wearable and conformable devices for defense applications, and for consumer electronics," said Lipomi. "We are taking these design rules and doing wet chemistry in the lab to make new semiconducting rubber materials."

While flexible electronics based on thin-film semiconductors are nearing commercialization, stretchable electronic materials and devices are in their infancy. Stretchable electronic materials would be conformable to non-planar surfaces without wrinkling and could be integrated with the moving parts of machines and the body in a way that materials exhibiting only flexibility could not be. For example, one of the chief applications envisioned by Lipomi is a low cost "solar tarp" that can be folded up for packaging and stretched back out to supply low cost energy to rural villages, disaster relief operations and the military operating in remote locations. Another long-term goal of the Lipomi lab is to produce electronic polymers whose properties--extreme elasticity, biodegradability, and self-repair--are inspired by biological tissue for applications in implantable biomedical devices and prosthetics.

Lipomi has been studying why the molecular structures of these "rubber" semiconductors cause some to be more elastic than others. In one project published recently in the journal Macromolecules, the Lipomi lab discovered that polymers with strings of seven carbon atoms attached produce exactly the right balance of stretchability and functionality. That balance is key to producing devices that are "flexible, stretchable, collapsible and fracture proof."

Lipomi's team has also created a high-performance, "low-bandgap" elastic semiconducting polymer using a new synthetic strategy the team invented. Solid polymers are partially crystalline, which gives them good electrical properties, but also makes the polymer material stiff and brittle. By introducing randomness in the molecular structure of the polymer, Lipomi's lab increased its elasticity by a factor of two without decreasing the electronic performance of the material. Their discovery, published in RSC Advances, is also useful for applications in stretchable and ultra-flexible devices.

####

For more information, please click here

Contacts:
Catherine Hockmuth
858-822-1359

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download Chemistry of Materials article:

Related News Press

News and information

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Flexible Electronics

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

New conductive coatings for flexible touchscreens – presentation at nano tech 2015 in Japan January 22nd, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Discoveries

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Announcements

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Energy

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Solar/Photovoltaic

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE