Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Discovery Creates a Better Chance for Clean Energy Research: UH Researchers Find First New High-Efficiency Thermoelectric Material in 60 Years

A transmission electron microscope image shows the newly discovered thermoelectric material. The small grains reduce heat conduction, making thermoelectric power generation more efficient.
A transmission electron microscope image shows the newly discovered thermoelectric material. The small grains reduce heat conduction, making thermoelectric power generation more efficient.

Abstract:
University of Houston physicists have discovered a new thermoelectric material offering high performance at temperatures ranging from room temperature up to 300 degrees Celsius, or about 573 degrees Fahrenheit.

Discovery Creates a Better Chance for Clean Energy Research: UH Researchers Find First New High-Efficiency Thermoelectric Material in 60 Years

Houston, TX | Posted on May 7th, 2014

"This new material is better than the traditional material, Bismuth telluride, and can be used for waste heat conversion into electricity much more efficiently," said Zhifeng Ren, M.D. Anderson Chair professor of physics at UH and the lead author of a paper describing the discovery, published online by Nano Energy.

Ren, who is also principal investigator at the Texas Center for Superconductivity at UH, said the work could be important for clean energy research and commercialization at temperatures of about 300 degrees Celsius.

Bismuth telluride has been the standard thermoelectric material since the 1950s and is used primarily for cooling, although it can also be used at temperatures up to 250 C, or 482 F, for power generation, with limited efficiency.

For this discovery, Ren and other members of his lab used a combination of magnesium, silver and antimony to generate electricity from heat using the thermoelectric principle. They added a small amount of nickel, after which Ren said the compound worked even better.

The work was done in collaboration with researchers from the UH Department of Chemistry and the Massachusetts Institute of Technology. Huaizhou Zhao and Jiehe Sui, a member of Ren's lab whose home institute is the Harbin Institute of Technology in China, were primary contributors; Zhao is now a research scientist at the Institute of Physics with the Chinese Academy of Sciences.

The material works well up to 300 C, Ren said; work to improve its efficiency is ongoing.

The potential for capturing heat - from power plants, industrial smokestacks and even vehicle tailpipes - and converting it into electricity is huge, allowing heat that is currently wasted to be used to generate power. Ren said temperatures there can range from 200 C to 1,000 C, and until now, there hasn't been a thermoelectric material capable of working once conditions get beyond the lower levels of heat. Much of the demand ranges from 250 C to 300 C, he said.

Ren long has worked in thermoelectrics, among other scientific fields. His research group published an article in the journal Science in 2008 establishing that the efficiency - the technical term is the "figure of merit" - of Bismuth telluride could be increased as much as 20 percent by changing how it is processed. At the time, Ren was at Boston College.

And his lab last summer published a paper in the Proceedings of the National Academy of Sciences establishing tin telluride with the addition of the chemical element indium as a material capable of converting waste heat to electricity. But tin telluride works best at temperatures higher than about 300 C, or about 573 F, making it important to continue looking for another material that works at lower temperatures.

Ren's group isn't the first to study the new material, which has not been named but is referred to in the Nano Energy paper as simply MgAgSb-based materials, using the chemical names for the elements used to create it. The paper cites work done in 2012 by M.J. Kirkham, et al; that work used magnesium, silver and antimony in equal parts, Ren said, but resulted in impurities and poor conducting properties.

He said his lab found that using slightly less silver and antimony, and mixing the elements separately - putting magnesium and silver first in the ball milling process, adding the antimony after several hours - eliminated the impurities and significantly improved the thermoelectric properties.

"We had much different qualities," he said. "Better, with no impurities, and smaller grain size, along with much better thermoelectric properties."

####

About University of Houston
The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country.

For more information, please click here

Contacts:
Jeannie Kever
713/743-0778

@JEKever

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discoveries

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Materials/Metamaterials

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Announcements

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project