Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Probing dopant distribution: Finding by Berkeley Lab Researchers at the Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Schematic representation of plasmonic nanocrystals with (a) uniform and (b) surface-segregated dopant distributions. In (a), most of the electron cloud is scattered from ionized impurities (green); in (b), most of the electron cloud is oscillating away from the impurities.
Schematic representation of plasmonic nanocrystals with (a) uniform and (b) surface-segregated dopant distributions. In (a), most of the electron cloud is scattered from ionized impurities (green); in (b), most of the electron cloud is oscillating away from the impurities.

Abstract:
The icing on the cake for semiconductor nanocrystals that provide a non-damped optoelectronic effect may exist as a layer of tin that segregates near the surface.

Probing dopant distribution: Finding by Berkeley Lab Researchers at the Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Berkeley, CA | Posted on May 7th, 2014

One method of altering the electrical properties of a semiconductor is by introducing impurities called dopants. A team led by Delia Milliron, a chemist at Berkeley Lab's Molecular Foundry, a U.S Department of Energy (DOE) national nanoscience center, has demonstrated that equally important as the amount of dopant is how the dopant is distributed on the surface and throughout the material. This opens the door for engineering the distribution of the dopant in order to control what wavelength the material will absorb and more generally how light interacts with the nanocrystals.

"Doping in semiconductor nanocrystals is still an evolving art," says Milliron. "Only in the last few years have people begun to observe interesting optical properties as a result of introducing dopants to these materials, but how the dopants are distributed within the nanocrystals remains largely unknown. What sites they occupy and where they are situated throughout the material greatly influences optical properties."

Milliron's most recent claim to fame, a "smart window" technology that not only blocks natural infrared (IR) radiation while allowing the passage of visible light through transparent coated glass, but also allows for independent control over both kinds of radiation, relies on a doped semiconductor called indium tin oxide (ITO).

ITO, in which tin (the dopant) has replaced some of the indium ions in indium oxide (the semiconductor), has become the prototypical doped semiconductor nanocrystal material. It is used in all kinds of electronic devices, including touchscreens displays, smart windows and solar cells.

"The exciting thing about this class of materials is that the dopants are able to introduce free electrons that form at high density within the material, which makes them conducting and thus useful as transparent conductors," says Milliron

But the same electrons cause the materials to be plasmonic in the IR part of the spectrum. This means that light of IR wavelength can be resonant with free electrons in the material: the oscillating electric fields in the light resonate and can cause absorption.

"[These materials] can absorb IR light in a way that's tunable by adjusting the doping, while still being transparent to natural visible light. A tunable amount of absorption of IR light allows you to control heating. For us, that's the driving application," explains Milliron.

Until now, adjustments have been made by changing the amount of dopant in the semiconductor. Puzzled by studies in which optical properties did not behave as expected, Milliron and University of California (UC) Berkeley PhD candidate Sebastien Lounis looked to x-ray photoelectron spectroscopy to probe electrons near the surface of the ITO samples and investigate the distribution of elements within the samples at the Stanford Synchrotron Radiation Lightsource (SSRL).

The SSRL uses a tuneable beam of photons to excite electrons inside the material. If the electrons are close enough to the surface, they can sometimes be emitted and collected by a detector. These electrons provide information about the properties of the material, including the ratio of the amounts of different elements like indium and tin in ITO. Increasing the energy of the x-ray beam shows how the composition of tin and indium changes as one moves deeper into the sample. Ultimately, the spectroscopy technique allowed Milliron and her team to probe the doping distribution as a function of distance from the nanocrystals' surface.

Studies of two sets of samples allowed them to correlated tin distribution with optical properties, and showed that the shape and wavelength of plasmon absorption depended on tin distribution. The tin segregated on the surface showed reduced activation of dopants and symmetric plasmon resonances, with no damping caused by the dopants.

"When the tin sits near the surface, it interacts only weakly with the majority of the free electrons," explains Lounis. "This gives us the benefits of doping without some of drawbacks."

"Now that we know how to probe, we can go after targeted design features for particular applications," concludes Milliron. Deliberate placement of dopants by design provides a new tool for "dialing in plasmonic materials to do exactly what we want in terms of interaction with light."

A paper on this research has been accepted for publication in the Journal of the American Chemical Society (JACS) in April 2014. The paper is titled "The influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals" with Lounis as the lead author and Milliron as the corresponding author. Other authors are Evan Runnerstorm, Amy Bergerud, and Dennis Nordlund.

This research was primarily supported by the DOE Office of Science.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Rachel Berkowitz
(510) 486-7254

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Physics

A first glimpse inside a macroscopic quantum state March 28th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Chemistry

Chemists make new silicon-based nanomaterials March 27th, 2015

Laboratories

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Materials/Metamaterials

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE