Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Probing dopant distribution: Finding by Berkeley Lab Researchers at the Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Schematic representation of plasmonic nanocrystals with (a) uniform and (b) surface-segregated dopant distributions. In (a), most of the electron cloud is scattered from ionized impurities (green); in (b), most of the electron cloud is oscillating away from the impurities.
Schematic representation of plasmonic nanocrystals with (a) uniform and (b) surface-segregated dopant distributions. In (a), most of the electron cloud is scattered from ionized impurities (green); in (b), most of the electron cloud is oscillating away from the impurities.

Abstract:
The icing on the cake for semiconductor nanocrystals that provide a non-damped optoelectronic effect may exist as a layer of tin that segregates near the surface.

Probing dopant distribution: Finding by Berkeley Lab Researchers at the Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Berkeley, CA | Posted on May 7th, 2014

One method of altering the electrical properties of a semiconductor is by introducing impurities called dopants. A team led by Delia Milliron, a chemist at Berkeley Lab's Molecular Foundry, a U.S Department of Energy (DOE) national nanoscience center, has demonstrated that equally important as the amount of dopant is how the dopant is distributed on the surface and throughout the material. This opens the door for engineering the distribution of the dopant in order to control what wavelength the material will absorb and more generally how light interacts with the nanocrystals.

"Doping in semiconductor nanocrystals is still an evolving art," says Milliron. "Only in the last few years have people begun to observe interesting optical properties as a result of introducing dopants to these materials, but how the dopants are distributed within the nanocrystals remains largely unknown. What sites they occupy and where they are situated throughout the material greatly influences optical properties."

Milliron's most recent claim to fame, a "smart window" technology that not only blocks natural infrared (IR) radiation while allowing the passage of visible light through transparent coated glass, but also allows for independent control over both kinds of radiation, relies on a doped semiconductor called indium tin oxide (ITO).

ITO, in which tin (the dopant) has replaced some of the indium ions in indium oxide (the semiconductor), has become the prototypical doped semiconductor nanocrystal material. It is used in all kinds of electronic devices, including touchscreens displays, smart windows and solar cells.

"The exciting thing about this class of materials is that the dopants are able to introduce free electrons that form at high density within the material, which makes them conducting and thus useful as transparent conductors," says Milliron

But the same electrons cause the materials to be plasmonic in the IR part of the spectrum. This means that light of IR wavelength can be resonant with free electrons in the material: the oscillating electric fields in the light resonate and can cause absorption.

"[These materials] can absorb IR light in a way that's tunable by adjusting the doping, while still being transparent to natural visible light. A tunable amount of absorption of IR light allows you to control heating. For us, that's the driving application," explains Milliron.

Until now, adjustments have been made by changing the amount of dopant in the semiconductor. Puzzled by studies in which optical properties did not behave as expected, Milliron and University of California (UC) Berkeley PhD candidate Sebastien Lounis looked to x-ray photoelectron spectroscopy to probe electrons near the surface of the ITO samples and investigate the distribution of elements within the samples at the Stanford Synchrotron Radiation Lightsource (SSRL).

The SSRL uses a tuneable beam of photons to excite electrons inside the material. If the electrons are close enough to the surface, they can sometimes be emitted and collected by a detector. These electrons provide information about the properties of the material, including the ratio of the amounts of different elements like indium and tin in ITO. Increasing the energy of the x-ray beam shows how the composition of tin and indium changes as one moves deeper into the sample. Ultimately, the spectroscopy technique allowed Milliron and her team to probe the doping distribution as a function of distance from the nanocrystals' surface.

Studies of two sets of samples allowed them to correlated tin distribution with optical properties, and showed that the shape and wavelength of plasmon absorption depended on tin distribution. The tin segregated on the surface showed reduced activation of dopants and symmetric plasmon resonances, with no damping caused by the dopants.

"When the tin sits near the surface, it interacts only weakly with the majority of the free electrons," explains Lounis. "This gives us the benefits of doping without some of drawbacks."

"Now that we know how to probe, we can go after targeted design features for particular applications," concludes Milliron. Deliberate placement of dopants by design provides a new tool for "dialing in plasmonic materials to do exactly what we want in terms of interaction with light."

A paper on this research has been accepted for publication in the Journal of the American Chemical Society (JACS) in April 2014. The paper is titled "The influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals" with Lounis as the lead author and Milliron as the corresponding author. Other authors are Evan Runnerstorm, Amy Bergerud, and Dennis Nordlund.

This research was primarily supported by the DOE Office of Science.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Rachel Berkowitz
(510) 486-7254

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Laboratories

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Chemistry

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Chip Technology

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Discoveries

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Energy

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE