Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscale heat flow predictions: Heat flow in novel nanomaterials could help in creating environmentally friendly and cost-effective nanometric-scale energy devices

Snapshot of the final configuration of a nc-Si sample© Melis et al.
Snapshot of the final configuration of a nc-Si sample

© Melis et al.

Abstract:
Physicists are now designing novel materials with physical properties tailored to meet specific energy consumption needs. Before these so-called materials-by-design can be applied, it is essential to understand their characteristics, such as heat flow. Now, a team of Italian physicists has developed a predictive theoretical model for heat flux in these materials, using atom-scale calculations. The research, carried out by Claudio Melis and colleagues from the University of Cagliary, Italy, is published in EPJ B. Their findings could have implications for optimising the thermal budget of nanoelectronic devices—which means they could help dissipate the total amount of thermal energy generated by electron currents—or in the production of energy through thermoelectric effects in novel nanomaterials.

Nanoscale heat flow predictions: Heat flow in novel nanomaterials could help in creating environmentally friendly and cost-effective nanometric-scale energy devices

Heidelberg, Germany and New York, NY | Posted on May 7th, 2014

The authors relied on large-scale molecular dynamics simulations to investigate nanoscale thermal transport and determine the corresponding physical characteristics, which determine thermal conductivity. Traditional atomistic calculation methods involve a heavy computational workload, which sometimes prevents their application to systems large enough to model the experimental structural complexity of real samples.

Instead, Melis and colleagues adopted a method called approach equilibrium molecular dynamics (AEMD), which is robust and suitable for representing large systems. Thus, it can use simulations to deliver trustworthy predictions on thermal transport. The authors investigated the extent to which the reliability of the AEMD method results is affected by any implementation issues.

In addition, they applied the method to thermal transport in nanostructured silicon, a system of current interest with high potential impact on thermoelectric technology, using simulations of unprecedented size. Ultimately, the model could be applied to semiconductors used as high-efficiency thermoelectrics, and to graphene nanoribbons used as heat sinks for so-called ultra large scale integration devices, such as computer microprocessors.

####

For more information, please click here

Contacts:
Saskia Rohmer

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: C. Melis, R. Dettori, S. Vandermeulen and L. Colombo (2014), Calculating thermal conductivity in a transient conduction regime: theory and implementation, European Physical Journal B, DOI 10.1140/epjb/e2014-50119-0:

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Physics

Canadian physicists discover new properties of superconductivity February 8th, 2016

Chip Technology

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Discoveries

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Materials/Metamaterials

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Announcements

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic