Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale heat flow predictions: Heat flow in novel nanomaterials could help in creating environmentally friendly and cost-effective nanometric-scale energy devices

Snapshot of the final configuration of a nc-Si sample© Melis et al.
Snapshot of the final configuration of a nc-Si sample

© Melis et al.

Abstract:
Physicists are now designing novel materials with physical properties tailored to meet specific energy consumption needs. Before these so-called materials-by-design can be applied, it is essential to understand their characteristics, such as heat flow. Now, a team of Italian physicists has developed a predictive theoretical model for heat flux in these materials, using atom-scale calculations. The research, carried out by Claudio Melis and colleagues from the University of Cagliary, Italy, is published in EPJ B. Their findings could have implications for optimising the thermal budget of nanoelectronic devices—which means they could help dissipate the total amount of thermal energy generated by electron currents—or in the production of energy through thermoelectric effects in novel nanomaterials.

Nanoscale heat flow predictions: Heat flow in novel nanomaterials could help in creating environmentally friendly and cost-effective nanometric-scale energy devices

Heidelberg, Germany and New York, NY | Posted on May 7th, 2014

The authors relied on large-scale molecular dynamics simulations to investigate nanoscale thermal transport and determine the corresponding physical characteristics, which determine thermal conductivity. Traditional atomistic calculation methods involve a heavy computational workload, which sometimes prevents their application to systems large enough to model the experimental structural complexity of real samples.

Instead, Melis and colleagues adopted a method called approach equilibrium molecular dynamics (AEMD), which is robust and suitable for representing large systems. Thus, it can use simulations to deliver trustworthy predictions on thermal transport. The authors investigated the extent to which the reliability of the AEMD method results is affected by any implementation issues.

In addition, they applied the method to thermal transport in nanostructured silicon, a system of current interest with high potential impact on thermoelectric technology, using simulations of unprecedented size. Ultimately, the model could be applied to semiconductors used as high-efficiency thermoelectrics, and to graphene nanoribbons used as heat sinks for so-called ultra large scale integration devices, such as computer microprocessors.

####

For more information, please click here

Contacts:
Saskia Rohmer

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: C. Melis, R. Dettori, S. Vandermeulen and L. Colombo (2014), Calculating thermal conductivity in a transient conduction regime: theory and implementation, European Physical Journal B, DOI 10.1140/epjb/e2014-50119-0:

Related News Press

Physics

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

News and information

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Chip Technology

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

2D insulators with ferromagnetism are rare; researchers just identified a new one May 10th, 2019

Computing faster with quasi-particles May 10th, 2019

Discoveries

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Army discovery opens path to safer batteries May 10th, 2019

Self-powered wearable tech May 8th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project