Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SEMATECH Achieves Breakthrough Defect Reductions in EUV Mask Blanks: Technologists at SEMATECH Successfully Reduce Defects from Multi-layer Deposition of Mask Blanks, Meeting the Defect Requirements for Early Introduction of EUV

Abstract:
SEMATECH announced today that researchers have reached a significant milestone in reducing tool-generated defects from the multi-layer deposition of mask blanks used for extreme ultraviolet (EUV) lithography, pushing the technology another significant step toward readiness for high-volume manufacturing (HVM).

SEMATECH Achieves Breakthrough Defect Reductions in EUV Mask Blanks: Technologists at SEMATECH Successfully Reduce Defects from Multi-layer Deposition of Mask Blanks, Meeting the Defect Requirements for Early Introduction of EUV

Albany, NY | Posted on May 6th, 2014

Following a four-year effort to improve deposition tool hardware, process parameters and substrate cleaning techniques, technologists at SEMATECH have, for the first time, deposited EUV multilayers with zero defects per mask at 100 nm sensitivity (SiO2 equivalent). Eliminating these large "killer" defects is essential for the use of EUV in early product development. These results were achieved on a 40 bi-layer Si/Mo film stack and measured over the entire mask blank quality area of 132x132 mm2.

In addition, by subtracting out incoming substrate defects, SEMATECH has demonstrated that the multilayer deposition process itself can achieve zero defects down to 50 nm sensitivity. Coupled with novel improvements to the mask substrate cleaning process to remove incoming defects, this represents the capability to both extend EUV to future nodes by eliminating smaller "killer" defects, and as a step to reducing smaller defects (which can be mitigated) to a level where improved yield and mask cost make EUV a more cost-effective HVM technology.

"SEMATECH's comprehensive programs continue to produce the results that our members and the industry need to show that EUV lithography is manufacturable," said Kevin Cummings, SEMATECH's Lithography manager. "Our Advanced Mask Development program continues to demonstrate practical results for mask blank defect reduction, more efficient deposition and cleaning, effective reticle handling, and other areas that the industry will need for successful EUV lithography manufacturing."
Defects are generally created by the deposition process or formed by decoration of substrate defects during the multilayer deposition process. These types of defects have prevented the quality of mask blanks from keeping pace with roadmap requirements for the production of pilot line and high-volume manufacturing EUV reticles. Reducing defects in the EUV mask blank multilayer deposition system is one of the most critical technology gaps the industry needs to address to enable cost-effective insertion of this technology at the 16 nm half-pitch.

"A low defect density reflective mask blank is considered to be one of the top two critical technology gaps for the commercialization of EUV," said Frank Goodwin, manager of SEMATECH's Advanced Mask Development program. "Through sophisticated defect analysis capabilities and processes, the goal of our work is to enable model-based prediction and data-driven analysis of defect performance for process improvement and component learning. We then use these models to feed into the new deposition tool design."

SEMATECH's Advanced Mask Blank Development program is located at the SUNY College of Nanoscale Science and Engineering (CNSE) in Albany, New York to develop defect-free EUV blanks.

####

About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter: www.twitter.com/sematech

For more information, please click here

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Tools

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Alliances/Trade associations/Partnerships/Distributorships

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Region’s Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project June 21st, 2016

Research showing why hierarchy exists will aid the development of artificial intelligence June 13th, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Printing/Lithography/Inkjet/Inks

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic