Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Removal of Organic Pollutant Tripled by New Nanocomposite Compared to Pure Titania

Abstract:
Iranian researchers from Malayer University succeeded in the production of a type of nanocomposite that helps better removal of organic pollutants up to three times in comparison with pure titania.

Removal of Organic Pollutant Tripled by New Nanocomposite Compared to Pure Titania

Tehran, Iran | Posted on May 6th, 2014

The nanocomposite can be used in the removal of heavy metals and in the purification of wastewater.

This research studied the effects of adding impurities to titania by using silicon (Si) and zirconium (Zr) on the stability of anatase phase formed at high temperatures. In addition, studying photocatalytic properties and the amount of degradation of the organic pollutant of methyl orange by the produced nanocomposite under visible light radiation was among other issues that were dealt with in this research.

Among the achievements acquired by the researchers in this study, mention can be made of the production of titania-based three-components nanocomposite, the possibility of organic pollutant removal up to three times comparing to pure titania, and the possibility of the stabilization of anatase phase up to 1000C. The results of the research can be used in the industries related to the removal of inorganic and organic pollutants and in the purification of petrochemical plants wastewater.

In case low concentration of rutile phase (10-20%) is added to anatase phase, photocatalytic properties of titania increase. Adding impurities to titania network by using metallic cations may prevent or help the higher concentration in rutile phase. It depends on the radius of the used cations and their arrangement in titania 3-D network.

According to the researchers, specific area of nanoparticles and adsorption centers increase when these materials are produced in the form of nanocomposites. As a result, photocatalytic properties increase.

Results of the research have been published in details in Journal of Sol-Gel Science and Technology, vol. 69, issue 2, February 2014, pp. 351-356.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Discoveries

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Announcements

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

From hot to cold: How to move objects at the nanoscale: Moving a single gold nanocluster on a graphene membrane, thanks to a thermal gradient applied to the borders: a new study sheds light on the physical mechanisms driving this phenomenon August 10th, 2017

Environment

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Water

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project