Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technique tracks proteins in single HIV particle

"Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied," says co-author Jelle Hendrix. Photo: Shutterstock
"Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied," says co-author Jelle Hendrix.

Photo: Shutterstock

Abstract:
An interdisciplinary team of scientists from KU Leuven in Belgium has developed a new technique to examine how proteins interact with each other at the level of a single HIV viral particle. The technique allows scientists to study the life-threatening virus in detail and makes screening potential anti-HIV drugs quicker and more efficient. The technique can also be used to study other diseases.

New technique tracks proteins in single HIV particle

Leuven, Belgium | Posted on May 5th, 2014



Understanding how the human immunodeficiency virus (HIV) reproduces itself is crucial in the effort to fight the disease. Upon entering the bloodstream, HIV viral particles, or virions, ‘highjack' individual immune cells. The virion binds to and then penetrates the immune cell. Once inside, the virion reprograms the genetic material of the immune cell to produce more HIV virions. In this way, HIV disables the disease-fighting ‘bodyguards' in our blood and turns them into breeding machines for new HIV virions.

Integrase plays a key role throughout this whole process: "Integrase is the HIV protein that causes the genetic material of HIV to link to that of the hijacked cell. It ensures the programming of the human cell upon infection. In our study, we wanted to track integrase during the different stages of infection," explains postdoctoral researcher Jelle Hendrix (Department of Chemistry). The challenge is to do this at the level of a single virion: "HIV has multiple ways of doing the same thing. This is the case for cell penetration, for instance. So it is certainly useful to be able to see exactly how the individual HIV virions are behaving."
Fluorescent

To achieve this, the researchers used single-molecule fluorescence imaging. They engineered a genetically modified HIV virion that was capable of infecting the cell but incapable of reproducing inside it. The virion was programmed to produce a fluorescent form of integrase. "This allowed us to examine the interactions of the florescent integrase under the light microscope both in vitro in a single HIV virion as well as in a human cell infected with it."

"We then used the technique to study both clinically approved and newly developed HIV inhibitors. Some of these drugs were thought to affect interaction between integrase particles. With our new technique, we were able to observe that this was indeed the case." The researchers' results were published recently in the journal ACS Nano.

"There are already a few dozen medications available for HIV, but further research is essential. Whenever HIV multiplies by hijacking an immune cell, there is a chance of mutation, and there is no guarantee that an HIV drug will be able to handle that mutation. A medication may not be as effective over the course of a patient's lifetime. Moreover, current HIV drugs are very expensive. Hence the importance of being able to test anti-HIV medications quickly and efficiently."
Nano test tube

The good news is that this new technique can be broadly applied: "It may seem surprising, but we can also use a genetically modified version of a dangerous virus to examine other pathogens. Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied. In principle, we can make any protein fluorescent, be it from HIV, from another disease or from a human cell."

"Researchers have been studying protein interactions for some time, but studying them at the level of a single viral particle was not possible until now," says Jelle Hendrix. Our technique allows scientists to quickly test many molecules - potential medications - for many diseases using minimal material. In future research, we will be using the technique to study integrase proteins of other viruses."

####

For more information, please click here

Contacts:
Dr. Jelle Hendrix

32-016-327-344

Copyright © KU Leuven

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Nanomedicine

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Discoveries

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Announcements

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanobiotechnology

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

New-Contracts/Sales/Customers

SENAI Outfits New Tribology Lab with Bruker UMT TriboLab Systems: Brazil’s National Service for Industrial Training Invests in Six Bruker Tribometers September 14th, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic