Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technique tracks proteins in single HIV particle

"Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied," says co-author Jelle Hendrix. Photo: Shutterstock
"Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied," says co-author Jelle Hendrix.

Photo: Shutterstock

Abstract:
An interdisciplinary team of scientists from KU Leuven in Belgium has developed a new technique to examine how proteins interact with each other at the level of a single HIV viral particle. The technique allows scientists to study the life-threatening virus in detail and makes screening potential anti-HIV drugs quicker and more efficient. The technique can also be used to study other diseases.

New technique tracks proteins in single HIV particle

Leuven, Belgium | Posted on May 5th, 2014



Understanding how the human immunodeficiency virus (HIV) reproduces itself is crucial in the effort to fight the disease. Upon entering the bloodstream, HIV viral particles, or virions, ‘highjack' individual immune cells. The virion binds to and then penetrates the immune cell. Once inside, the virion reprograms the genetic material of the immune cell to produce more HIV virions. In this way, HIV disables the disease-fighting ‘bodyguards' in our blood and turns them into breeding machines for new HIV virions.

Integrase plays a key role throughout this whole process: "Integrase is the HIV protein that causes the genetic material of HIV to link to that of the hijacked cell. It ensures the programming of the human cell upon infection. In our study, we wanted to track integrase during the different stages of infection," explains postdoctoral researcher Jelle Hendrix (Department of Chemistry). The challenge is to do this at the level of a single virion: "HIV has multiple ways of doing the same thing. This is the case for cell penetration, for instance. So it is certainly useful to be able to see exactly how the individual HIV virions are behaving."
Fluorescent

To achieve this, the researchers used single-molecule fluorescence imaging. They engineered a genetically modified HIV virion that was capable of infecting the cell but incapable of reproducing inside it. The virion was programmed to produce a fluorescent form of integrase. "This allowed us to examine the interactions of the florescent integrase under the light microscope both in vitro in a single HIV virion as well as in a human cell infected with it."

"We then used the technique to study both clinically approved and newly developed HIV inhibitors. Some of these drugs were thought to affect interaction between integrase particles. With our new technique, we were able to observe that this was indeed the case." The researchers' results were published recently in the journal ACS Nano.

"There are already a few dozen medications available for HIV, but further research is essential. Whenever HIV multiplies by hijacking an immune cell, there is a chance of mutation, and there is no guarantee that an HIV drug will be able to handle that mutation. A medication may not be as effective over the course of a patient's lifetime. Moreover, current HIV drugs are very expensive. Hence the importance of being able to test anti-HIV medications quickly and efficiently."
Nano test tube

The good news is that this new technique can be broadly applied: "It may seem surprising, but we can also use a genetically modified version of a dangerous virus to examine other pathogens. Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied. In principle, we can make any protein fluorescent, be it from HIV, from another disease or from a human cell."

"Researchers have been studying protein interactions for some time, but studying them at the level of a single viral particle was not possible until now," says Jelle Hendrix. Our technique allows scientists to quickly test many molecules - potential medications - for many diseases using minimal material. In future research, we will be using the technique to study integrase proteins of other viruses."

####

For more information, please click here

Contacts:
Dr. Jelle Hendrix

32-016-327-344

Copyright © KU Leuven

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Nanomedicine

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Discoveries

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Announcements

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Nanobiotechnology

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

New-Contracts/Sales/Customers

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic