Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technique tracks proteins in single HIV particle

"Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied," says co-author Jelle Hendrix. Photo: Shutterstock
"Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied," says co-author Jelle Hendrix.

Photo: Shutterstock

Abstract:
An interdisciplinary team of scientists from KU Leuven in Belgium has developed a new technique to examine how proteins interact with each other at the level of a single HIV viral particle. The technique allows scientists to study the life-threatening virus in detail and makes screening potential anti-HIV drugs quicker and more efficient. The technique can also be used to study other diseases.

New technique tracks proteins in single HIV particle

Leuven, Belgium | Posted on May 5th, 2014



Understanding how the human immunodeficiency virus (HIV) reproduces itself is crucial in the effort to fight the disease. Upon entering the bloodstream, HIV viral particles, or virions, ‘highjack' individual immune cells. The virion binds to and then penetrates the immune cell. Once inside, the virion reprograms the genetic material of the immune cell to produce more HIV virions. In this way, HIV disables the disease-fighting ‘bodyguards' in our blood and turns them into breeding machines for new HIV virions.

Integrase plays a key role throughout this whole process: "Integrase is the HIV protein that causes the genetic material of HIV to link to that of the hijacked cell. It ensures the programming of the human cell upon infection. In our study, we wanted to track integrase during the different stages of infection," explains postdoctoral researcher Jelle Hendrix (Department of Chemistry). The challenge is to do this at the level of a single virion: "HIV has multiple ways of doing the same thing. This is the case for cell penetration, for instance. So it is certainly useful to be able to see exactly how the individual HIV virions are behaving."
Fluorescent

To achieve this, the researchers used single-molecule fluorescence imaging. They engineered a genetically modified HIV virion that was capable of infecting the cell but incapable of reproducing inside it. The virion was programmed to produce a fluorescent form of integrase. "This allowed us to examine the interactions of the florescent integrase under the light microscope both in vitro in a single HIV virion as well as in a human cell infected with it."

"We then used the technique to study both clinically approved and newly developed HIV inhibitors. Some of these drugs were thought to affect interaction between integrase particles. With our new technique, we were able to observe that this was indeed the case." The researchers' results were published recently in the journal ACS Nano.

"There are already a few dozen medications available for HIV, but further research is essential. Whenever HIV multiplies by hijacking an immune cell, there is a chance of mutation, and there is no guarantee that an HIV drug will be able to handle that mutation. A medication may not be as effective over the course of a patient's lifetime. Moreover, current HIV drugs are very expensive. Hence the importance of being able to test anti-HIV medications quickly and efficiently."
Nano test tube

The good news is that this new technique can be broadly applied: "It may seem surprising, but we can also use a genetically modified version of a dangerous virus to examine other pathogens. Essentially, we have created a nano test tube out of an HIV virion, inside of which protein interactions can be studied. In principle, we can make any protein fluorescent, be it from HIV, from another disease or from a human cell."

"Researchers have been studying protein interactions for some time, but studying them at the level of a single viral particle was not possible until now," says Jelle Hendrix. Our technique allows scientists to quickly test many molecules - potential medications - for many diseases using minimal material. In future research, we will be using the technique to study integrase proteins of other viruses."

####

For more information, please click here

Contacts:
Dr. Jelle Hendrix

32-016-327-344

Copyright © KU Leuven

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanomedicine

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Discoveries

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Announcements

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Nanobiotechnology

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

New-Contracts/Sales/Customers

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project