Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Brookhaven's Charles T. Black Named a Battelle "Inventor of the Year": Recognized for work harnessing nanoscale self assembly

Brookhaven physicist Charles T. Black with one of his nanostructured surfaces
Brookhaven physicist Charles T. Black with one of his nanostructured surfaces

Abstract:
Charles T. Black, a physicist developing new ways to engineer materials for energy applications at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, is being honored as an "Inventor of the Year" by Battelle-the global science and technology organization that, together with Stony Brook University, manages Brookhaven Lab through the company Brookhaven Science Associates. The annual awards recognize individuals who have made significant scientific or engineering contributions with important societal or financial impacts. Black was honored at a celebration at Battelle's headquarters in Columbus, Ohio, on May 2.

Brookhaven's Charles T. Black Named a Battelle "Inventor of the Year": Recognized for work harnessing nanoscale self assembly

Upton, NY | Posted on May 5th, 2014

Black is being recognized for his work at Brookhaven's Center for Functional Nanomaterials (CFN), where he explores the use of nanostructured materials and self-assembly approaches in solar devices. The term "self assembly" describes the process by which individual objects can be made to spontaneously organize into regular patterns without human intervention. Black's goal is to direct and harness the tendency of certain materials to self organize into nanometer-scale patterns for improving the performance of solar cells.

"I'm excited and honored to be recognized by Battelle," said Black. "Scientific research has always been a creative outlet that lets me use my imagination. I enjoy exploring new ideas for finding solutions to challenging problems."

While working at IBM, Black pioneered using polymer self assembly to assist in fabricating high-performance semiconductor devices for microelectronics, a concept that today is moving rapidly toward commercial adoption.

Now, as Group Leader for Electronic Nanomaterials at the CFN, he continues to conduct seminal research on polymer self assembly-a nontraditional approach to designing materials with enhanced electronic and optical properties by controlling their internal structure at the nanoscale.

"I joined Brookhaven for the chance to apply nanotechnology approaches to society's energy challenge. The Center for Functional Nanomaterials is an excellent environment for this sort of research-full of talented scientists and state-of-the-art instrumentation for making and characterizing nanostructured materials."

Black has been instrumental in promoting invention and innovation at the CFN. Holding more than 40 U.S. patents combining his research careers at Brookhaven and IBM, Black's inventions include novel electronic devices and electrical contact designs, photovoltaic materials and structures, nanostructured surfaces exhibiting extreme water repellency and broadband antireflectivity, as well as unique tools that enable quantitative analysis of nanostructures.

Black earned a Ph.D. in physics from Harvard University in 1996, and began his career as a research staff member at the IBM Thomas J. Watson Research Center. In 2006, he joined Brookhaven as a scientist and group leader, managing the CFN's Electronic Nanomaterials Group. He has authored more than 100 scientific papers, and has been recognized with numerous awards for his innovative research contributions, including Industry Week Magazine's Technology of the Year Award in 2004, IBM's Outstanding Technical Achievement Award in 2005, and the 2004 World Technology Award for Information Technology Hardware. In 2010 he received a U.S. Department of Energy Outstanding Mentor Award. Black is a Fellow of the American Physical Society and a Senior Member of the Institute of Electrical and Electronics Engineers.

His work at the CFN is funded by the DOE Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The Center for Functional Nanomaterials at Brookhaven National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350


Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Laboratories

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Molecular Nanotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities June 18th, 2015

Self Assembly

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project