Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian, Finnish Scientists Present New Model to Determine Nanocomposites Properties

Abstract:
Iranian researchers from Isfahan University of Technology in association with Finnish researchers from Alto University presented a micromechanical model that is able to predict mechanical properties of various types of polymeric and metallic base nanocomposites.

Iranian, Finnish Scientists Present New Model to Determine Nanocomposites Properties

Tehran, Iran | Posted on May 3rd, 2014

Taking into account the malfunctions of nanocomposites, the model is able to present an appropriate and ideal method for the production of a nanocomposite with the best mechanical properties. The method has applications in various industries, including aerospace, automobile manufacturing and medical engineering.

Theoretical methods that are commonly used for the calculation of mechanical properties of nanocomposites are not in agreement with results obtained from experimental data. The main reason for the disagreement is the presence of malfunctions such as accumulation and compression of strengthening nanomaterials and their separation from the composite bed. The model is in conformity with the reality of the problem, and it is able to take into consideration the separation of strengthening materials from the bed during the mechanical loading.

By observing significant difference between experimental data and the existing theories, the researchers proposed a new micromechanical model that is able to provide an initial determination of the size of strengthening particles and their surface adhesive energy with the bed material. Evaluation of the proposed model showed that there was small difference between results obtained from the theoretical model and the experimental data.

In order to prevent the damage caused by the separation of strengthening materials from the bed, tension-stress curves obtained from different methods can be compared with results obtained from the theory so that an ideal method is achieved to produce nanocomposites. In other words, comparing the obtained results showed the best method to create higher surface adhesion energy and give the optimum size for the strengthening particles to prevent the separation.

Results of the research have been published in Composites Science and Technology, vol. 93, issue 1, January 2014, pp. 38-45.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Discoveries

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project