Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian, Finnish Scientists Present New Model to Determine Nanocomposites Properties

Abstract:
Iranian researchers from Isfahan University of Technology in association with Finnish researchers from Alto University presented a micromechanical model that is able to predict mechanical properties of various types of polymeric and metallic base nanocomposites.

Iranian, Finnish Scientists Present New Model to Determine Nanocomposites Properties

Tehran, Iran | Posted on May 3rd, 2014

Taking into account the malfunctions of nanocomposites, the model is able to present an appropriate and ideal method for the production of a nanocomposite with the best mechanical properties. The method has applications in various industries, including aerospace, automobile manufacturing and medical engineering.

Theoretical methods that are commonly used for the calculation of mechanical properties of nanocomposites are not in agreement with results obtained from experimental data. The main reason for the disagreement is the presence of malfunctions such as accumulation and compression of strengthening nanomaterials and their separation from the composite bed. The model is in conformity with the reality of the problem, and it is able to take into consideration the separation of strengthening materials from the bed during the mechanical loading.

By observing significant difference between experimental data and the existing theories, the researchers proposed a new micromechanical model that is able to provide an initial determination of the size of strengthening particles and their surface adhesive energy with the bed material. Evaluation of the proposed model showed that there was small difference between results obtained from the theoretical model and the experimental data.

In order to prevent the damage caused by the separation of strengthening materials from the bed, tension-stress curves obtained from different methods can be compared with results obtained from the theory so that an ideal method is achieved to produce nanocomposites. In other words, comparing the obtained results showed the best method to create higher surface adhesion energy and give the optimum size for the strengthening particles to prevent the separation.

Results of the research have been published in Composites Science and Technology, vol. 93, issue 1, January 2014, pp. 38-45.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Discoveries

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Materials/Metamaterials

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Announcements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project