Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flexible pressure-sensor film shows how much force a surface 'feels' -- in color

Using colors from deep blue to rich coral, a novel sensor can tell us how much force and pressure objects such as crash-test dummies “feel.”
Credit: American Chemical Society
Using colors from deep blue to rich coral, a novel sensor can tell us how much force and pressure objects such as crash-test dummies “feel.”

Credit: American Chemical Society

Abstract:
A newly developed pressure sensor could help car manufacturers design safer automobiles and even help Little League players hold their bats with a better grip, scientists report. The study describing their high-resolution sensor, which can be painted onto surfaces or built into gloves, appears in the ACS journal Nano Letters.

Flexible pressure-sensor film shows how much force a surface 'feels' -- in color

Washington, DC | Posted on April 30th, 2014

Yadong Yin and colleagues explain that pressure is a part of our daily lives. We and the objects around us constantly exert pressure on surfaces, from a simple, light touch of a finger on a smartphone screen to the impact of a head-on car collision. To design better cars, smartphones and other objects we use every day, scientists need to know how much force they can withstand. Most pressure gauges are bulky hunks of metal that can't fit into tight spaces. Other sensors on the market are thin and can indicate stresses with different shades of the same color, but they are difficult to interpret and have low resolution and contrast, says Yin. To overcome these challenges, the team turned to nanoparticles — which are so small that 1,000 would fit across the width of a human hair.

Tiny gold nanoparticles can join together in chains, and disrupting these chains results in a change in color. The researchers took advantage of that unique property to design a new type of pressure-sensor film, which is a deep blue color when the nanoparticles are linked together, but becomes ruby red when the nanoparticles irreversibly disassemble under stress. "Our colorimetric sensor film changes color, not just color intensity, which gives us the benefit of higher contrast and resolution," says Yin. "We also can make it into a liquid, which can be painted on objects such as crash test dummies that have complex surfaces."

###

The authors acknowledge funding from the National Science Foundation.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Yadong Yin, Ph.D.
Department of Chemistry
Materials Science and Engineering Program
University of California
Riverside, Calif. 92521
Phone: 951-827-4965

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - “Colorimetric Stress Memory Sensor Based on Disassembly of Gold Nanoparticle Chains”

Related News Press

News and information

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Announcements

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project