Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Flexible pressure-sensor film shows how much force a surface 'feels' -- in color

Using colors from deep blue to rich coral, a novel sensor can tell us how much force and pressure objects such as crash-test dummies “feel.”
Credit: American Chemical Society
Using colors from deep blue to rich coral, a novel sensor can tell us how much force and pressure objects such as crash-test dummies “feel.”

Credit: American Chemical Society

Abstract:
A newly developed pressure sensor could help car manufacturers design safer automobiles and even help Little League players hold their bats with a better grip, scientists report. The study describing their high-resolution sensor, which can be painted onto surfaces or built into gloves, appears in the ACS journal Nano Letters.

Flexible pressure-sensor film shows how much force a surface 'feels' -- in color

Washington, DC | Posted on April 30th, 2014

Yadong Yin and colleagues explain that pressure is a part of our daily lives. We and the objects around us constantly exert pressure on surfaces, from a simple, light touch of a finger on a smartphone screen to the impact of a head-on car collision. To design better cars, smartphones and other objects we use every day, scientists need to know how much force they can withstand. Most pressure gauges are bulky hunks of metal that can't fit into tight spaces. Other sensors on the market are thin and can indicate stresses with different shades of the same color, but they are difficult to interpret and have low resolution and contrast, says Yin. To overcome these challenges, the team turned to nanoparticles — which are so small that 1,000 would fit across the width of a human hair.

Tiny gold nanoparticles can join together in chains, and disrupting these chains results in a change in color. The researchers took advantage of that unique property to design a new type of pressure-sensor film, which is a deep blue color when the nanoparticles are linked together, but becomes ruby red when the nanoparticles irreversibly disassemble under stress. "Our colorimetric sensor film changes color, not just color intensity, which gives us the benefit of higher contrast and resolution," says Yin. "We also can make it into a liquid, which can be painted on objects such as crash test dummies that have complex surfaces."

###

The authors acknowledge funding from the National Science Foundation.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Yadong Yin, Ph.D.
Department of Chemistry
Materials Science and Engineering Program
University of California
Riverside, Calif. 92521
Phone: 951-827-4965

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - “Colorimetric Stress Memory Sensor Based on Disassembly of Gold Nanoparticle Chains”

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Sensors

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Discoveries

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic