Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanosponge decoy fights superbug infections: A good disguise enables the nanosponge to soak up toxins from drug-resistant infections or poisons

Cancers are notorious for secreting chemicals that confuse the immune system and thwart biological defenses. Researchers at Yale University have developed a novel system to simultaneously deliver a sustained dose of both an immune-system booster and a chemical to counter the cancer's secretions, resulting in a powerful therapy that, in mice, delayed tumor growth, sent tumors into remission and dramatically increased survival rates. The new immunotherapy incorporates well-studied drugs, but delivers them using nanolipogels (NLGs), a new drug transport technology the researchers designed. 
Credit: Nicolle Rager Fuller, National Science Foundation
Cancers are notorious for secreting chemicals that confuse the immune system and thwart biological defenses. Researchers at Yale University have developed a novel system to simultaneously deliver a sustained dose of both an immune-system booster and a chemical to counter the cancer's secretions, resulting in a powerful therapy that, in mice, delayed tumor growth, sent tumors into remission and dramatically increased survival rates. The new immunotherapy incorporates well-studied drugs, but delivers them using nanolipogels (NLGs), a new drug transport technology the researchers designed.

Credit: Nicolle Rager Fuller, National Science Foundation

Abstract:
Our first instinct with infection in the body is often to find it and get rid of it! But, engineer Liangfang Zhang had another idea. With support from the National Science Foundation (NSF), Zhang and his team at the University of California, San Diego (UCSD), have created a nanosponge to combat drug-resistant infections, such as those caused by Methicillin-resistant Staphylococcus aureus (MRSA).

Nanosponge decoy fights superbug infections: A good disguise enables the nanosponge to soak up toxins from drug-resistant infections or poisons

Arlington, VA | Posted on April 28th, 2014

The nanosponge, made from biocompatible, biodegradable polymer nanoparticles, is camouflaged with a red blood cell membrane. It circulates in the bloodstream, absorbing the toxins produced by infection. One red blood cell membrane can be used as a cloak for more than 3,000 of these stealthy nanosponges. Once the nanosponges are fully loaded with toxins, they are safely disposed of by the liver. They are designed to work with any type of infection or poison that attacks the cellular membrane.

Zhang is working closely with doctors and students at the UCSD Moores Cancer Center on this "nano" approach to tackling infections. He has been testing his approach on mice, with nearly a 100 percent success rate against staph infections. Human clinical trials are the next step!

The research in this episode was funded by NSF award #1216461, EAGER: Red Blood Cell Membrane Camouflaged Nanoparticles for Drug Delivery.

####

For more information, please click here

Contacts:
Miles O'Brien
Science Nation Correspondent


Marsha Walton
Science Nation Producer

Copyright © National Science Foundation (NSF)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Videos/Movies

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project