Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ames Lab researchers see rare-earth-like magnetic properties in iron

A single crystal of lithium-iron nitride. Scientists at Ames Laboratory observed magnetic properties in iron-ions in these lithium-iron nitrides that are typically associated withrare-earth elements.
A single crystal of lithium-iron nitride. Scientists at Ames Laboratory observed magnetic properties in iron-ions in these lithium-iron nitrides that are typically associated withrare-earth elements.

Abstract:
Scientists at the Department of Energy's Ames Laboratory have observed magnetic properties typically associated with those observed in rare-earth elements in iron. These properties are observed in a new iron based compound that does not contain rare earth elements, when the iron atom is positioned between two nitrogen atoms. The discovery opens the possibility of using iron to provide both the magnetism and permanence in high-strength permanent magnets, like those used in direct-drive wind turbines or electric motors in hybrid cars. The results appeared in Nature Communications.

Ames Lab researchers see rare-earth-like magnetic properties in iron

Ames, IA | Posted on April 28th, 2014

In modern magnets, iron gives most magnets their strength, and comes with the benefits of being abundant and cheap. But the magnet recipe must also include rare earth elements, which lend magnets "permanence," or the ability to keep the direction of the magnetic field fixed (also called anisotropy). The challenge is rare-earths materials are expensive and at risk of domestic supply shortages. So, ideal next-generation permanent magnets will rely more heavily on iron or other abundant materials and less on rare earths.

"The breakthrough here is that we see magnetic anisotropy normally associated with rare earths ions in iron," said Paul Canfield, Ames Laboratory physicist. "This isn't an industrial breakthrough at this point because these magnetic properties only reveal themselves at cryogenic temperatures. But, it's a basic science breakthrough that hopefully will point the way to future technical breakthroughs."
Image
A single crystal of lithium-iron nitride. Scientists
at Ames Laboratory observed magnetic
properties in iron-ions in these lithium-iron
nitrides that are typically associated with
rare-earth elements.

Canfield's research group is internationally known for expertise in design, discovery, growth and characterization of new and promising materials. In this effort, Canfield and his colleagues, including postdoctoral research associate Anton Jesche, designed a new technique to grow lithium-iron-nitride single crystals from a lithium-nitrogen solution.

"Using nitrogen in solution growth had not yet been well explored because, since we typically think of nitrogen as a gas, it's challenging to get into a solution" said Jesche, "But we found that lithium - lightest solid element -- looked like it could hold nitrogen in solution. So, we mixed together lithium and lithium-nitride powder, and it worked. It created a solution."

Then the group added in iron and, to their surprise, the iron dissolved.

"Usually iron and lithium don't mix," said Canfield, who is also a Distinguished Professor of physics and astronomy at Iowa State University. "It seems adding nitrogen to the lithium in the solution allows iron to go in."

The resulting single crystals of iron-substituted lithium nitride yielded even more surprises: the opposing external field required to reverse magnetization was more than 11 tesla, as much as an order of magnitude larger than that of commercially available permanent magnets and two or more orders of magnitude larger than is typically found in single crystals. Further evidence of iron's exotic state in this compound is the field-induced quantum tunneling found for very diluted iron concentrations at the relatively high temperature of 10 Kelvin, a temperature orders of magnitude higher than what had been seen before.

"With detailed measurements, we saw that these single iron ions are indeed behaving like a single rare-earth ion would," Canfield continued. "And we believe this has to do with the special, fairly simple, geometry that the iron finds itself in: one iron atom positioned between two nitrogen atoms. We hope this crystal growing technique and this specific material can be a model system for further theoretical study of these rare-earth-like iron ions. As it stands, these materials have clear implications on finding rare-earth-free replacements for permanent magnets -- and perhaps also may impact data storage and manipulation in quantum computer applications."

The research is funded by the DOE's Office of Science.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

####

About DOE/Ames Laboratory
Ames Laboratory is a U.S. Department of Energy national laboratory operated by Iowa State University for DOE’s Office of Science. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

For more information, please click here

Contacts:
Breehan Gerleman Lucchesi

515-294-9750

Paul Canfield
Division of Materials Sciences and Engineering
515-294-6270

Copyright © DOE/Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Laboratories

Exploring phosphorene, a promising new material April 29th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Topology explains queer electrical current boost in non-magnetic metal: Scientists reduce resistance in PdCoO2 with magnetic fields April 12th, 2016

Quantum Computing

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Discoveries

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Personal cooling units on the horizon April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic