Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ames Lab researchers see rare-earth-like magnetic properties in iron

A single crystal of lithium-iron nitride. Scientists at Ames Laboratory observed magnetic properties in iron-ions in these lithium-iron nitrides that are typically associated withrare-earth elements.
A single crystal of lithium-iron nitride. Scientists at Ames Laboratory observed magnetic properties in iron-ions in these lithium-iron nitrides that are typically associated withrare-earth elements.

Abstract:
Scientists at the Department of Energy's Ames Laboratory have observed magnetic properties typically associated with those observed in rare-earth elements in iron. These properties are observed in a new iron based compound that does not contain rare earth elements, when the iron atom is positioned between two nitrogen atoms. The discovery opens the possibility of using iron to provide both the magnetism and permanence in high-strength permanent magnets, like those used in direct-drive wind turbines or electric motors in hybrid cars. The results appeared in Nature Communications.

Ames Lab researchers see rare-earth-like magnetic properties in iron

Ames, IA | Posted on April 28th, 2014

In modern magnets, iron gives most magnets their strength, and comes with the benefits of being abundant and cheap. But the magnet recipe must also include rare earth elements, which lend magnets "permanence," or the ability to keep the direction of the magnetic field fixed (also called anisotropy). The challenge is rare-earths materials are expensive and at risk of domestic supply shortages. So, ideal next-generation permanent magnets will rely more heavily on iron or other abundant materials and less on rare earths.

"The breakthrough here is that we see magnetic anisotropy normally associated with rare earths ions in iron," said Paul Canfield, Ames Laboratory physicist. "This isn't an industrial breakthrough at this point because these magnetic properties only reveal themselves at cryogenic temperatures. But, it's a basic science breakthrough that hopefully will point the way to future technical breakthroughs."
Image
A single crystal of lithium-iron nitride. Scientists
at Ames Laboratory observed magnetic
properties in iron-ions in these lithium-iron
nitrides that are typically associated with
rare-earth elements.

Canfield's research group is internationally known for expertise in design, discovery, growth and characterization of new and promising materials. In this effort, Canfield and his colleagues, including postdoctoral research associate Anton Jesche, designed a new technique to grow lithium-iron-nitride single crystals from a lithium-nitrogen solution.

"Using nitrogen in solution growth had not yet been well explored because, since we typically think of nitrogen as a gas, it's challenging to get into a solution" said Jesche, "But we found that lithium - lightest solid element -- looked like it could hold nitrogen in solution. So, we mixed together lithium and lithium-nitride powder, and it worked. It created a solution."

Then the group added in iron and, to their surprise, the iron dissolved.

"Usually iron and lithium don't mix," said Canfield, who is also a Distinguished Professor of physics and astronomy at Iowa State University. "It seems adding nitrogen to the lithium in the solution allows iron to go in."

The resulting single crystals of iron-substituted lithium nitride yielded even more surprises: the opposing external field required to reverse magnetization was more than 11 tesla, as much as an order of magnitude larger than that of commercially available permanent magnets and two or more orders of magnitude larger than is typically found in single crystals. Further evidence of iron's exotic state in this compound is the field-induced quantum tunneling found for very diluted iron concentrations at the relatively high temperature of 10 Kelvin, a temperature orders of magnitude higher than what had been seen before.

"With detailed measurements, we saw that these single iron ions are indeed behaving like a single rare-earth ion would," Canfield continued. "And we believe this has to do with the special, fairly simple, geometry that the iron finds itself in: one iron atom positioned between two nitrogen atoms. We hope this crystal growing technique and this specific material can be a model system for further theoretical study of these rare-earth-like iron ions. As it stands, these materials have clear implications on finding rare-earth-free replacements for permanent magnets -- and perhaps also may impact data storage and manipulation in quantum computer applications."

The research is funded by the DOE's Office of Science.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

####

About DOE/Ames Laboratory
Ames Laboratory is a U.S. Department of Energy national laboratory operated by Iowa State University for DOE’s Office of Science. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

For more information, please click here

Contacts:
Breehan Gerleman Lucchesi

515-294-9750

Paul Canfield
Division of Materials Sciences and Engineering
515-294-6270

Copyright © DOE/Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Laboratories

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Memory Technology

The quantum middle man July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Buckle up for fast ionic conduction June 16th, 2015

Quantum Computing

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Discoveries

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Materials/Metamaterials

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

NEI Announces the Issuance of Multiple Patents on Self-Healing & Superhydrophobic Coatings June 30th, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project