Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano shake-up: UD researchers demonstrate that processing can affect size of nanocarriers for targeted drug delivery

Thomas H. Epps, III, (pictured) and Millicent Sullivan are leading a UD research team that has shown that routine processing and storage conditions can have a significant influence on the size and shape of drug nanocarriers produced from self-assembled polymers.Photo by Evan Krape
Thomas H. Epps, III, (pictured) and Millicent Sullivan are leading a UD research team that has shown that routine processing and storage conditions can have a significant influence on the size and shape of drug nanocarriers produced from self-assembled polymers.

Photo by Evan Krape

Abstract:
Significant advances have been made in chemotherapy over the past decade, but targeting drugs to cancer cells while avoiding healthy tissues continues to be a major challenge.

Nano shake-up: UD researchers demonstrate that processing can affect size of nanocarriers for targeted drug delivery

Newark, DE | Posted on April 14th, 2014

Nanotechnology has unlocked new pathways for targeted drug delivery, including the use of nanocarriers, or capsules, that can transport cargoes of small-molecule therapeutics to specific locations in the body.

The catch? These carriers are tiny, and it matters just how tiny they are. Change the size from 10 nanometers to 100 nanometers, and the drugs can end up in the wrong cells or organs and thereby damage healthy tissues.

A common assumption is that once a nanocarrier is created, it maintains its size and shape on the shelf as well as in the body.

However, recent work by a group of researchers led by Thomas H. Epps, III, and Millicent Sullivan in the Department of Chemical and Biomolecular Engineering at the University of Delaware has shown that routine procedures in handling and processing nanocarrier solutions can have a significant influence on the size and shape of these miniscule structures.

Their findings are reported in a paper, "Size Evolution of Highly Amphiphilic Macromolecular Solution Assemblies Via a Distinct Bimodal Pathway," published in Nature Communications on April 7.

Sullivan explains that chemotherapeutic agents are designed to affect processes related to cell division. Therefore, they not only kill cancer cells but also are toxic to other rapidly proliferating cells such as those in hair follicles and bone marrow. Side effects can range from hair loss to compromised immune systems.

"Our goal is to deliver drugs more selectively and specifically to cancer cells," Sullivan says. "We want to sequester the drug so that we can control when and where it has an impact."

Although there are a number of routes to creating drug-carrying nanocapsules, there is growing interest in the use of polymers for this application.

"Molecular self-assembly of polymers offers the ability to create uniform, tailorable structures of predetermined size and shape," Epps says. "The problem lies in assuming that once they're produced, they don't change."

It turns out that they do change, and very small changes can have a very large impact.

"At 75 nanometers, a nanocarrier may deliver its cargo directly to a tumor," Epps says. "But with vigorous shaking, it can grow to 150 nanometers and may accumulate in the liver or the spleen. So simple agitation can completely alter the distribution profile of the nanocarrier-drug complex in the body."

The work has significant implications for the production, storage, and use of nano-based drug delivery systems.

About the research

The researchers used a variety of experimental techniques — including cryogenic transmission electron microscopy (cryo-TEM), small angle X-ray scattering (SAXS), small angle neutron scattering (SANS), and dynamic light scattering (DLS) — to probe the effects of common preparation conditions on the long-term stability of the self-assembled structures.

The work was carried out in collaboration with the University's Center for Neutron Science and the National Institute of Standards and Technology Center for Neutron Research.

The paper was co-authored by Elizabeth Kelley, Ryan Murphy, Jonathan Seppala, Thomas Smart, and Sarah Hann.

Thomas H. Epps, III, is the Thomas and Kipp Gutshall Chair of Chemical and Biomolecular Engineering, and Millicent Sullivan is an associate professor in the Department of Chemical and Biomolecular Engineering.

Financial support for the research was provided from an Institutional Development Award (IDeA) from the National Institutes of Health, National Institute of General Medical Sciences (NIH grant P20GM103541).

Article by Diane Kukich

####

For more information, please click here

Contacts:
Andrea Boyle Tippett

302-831-1421

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE