Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > No compromises: JILA's short, flexible, reusable AFM probe

This image shows JILA's modified AFM probes measuring DNA molecules. The older mod (long cantilever, right) eliminated the usual gold coating to enhance long-term stability. The latest version (left) retains the gold coating where needed to reflect light but maintains excellent stability. Researchers also removed a large section to reduce stiffness and friction near surfaces. The new probe provides precise results much faster than before, while reducing "noise" (colored squiggles).

Credit: Credit: Baxley/JILA
This image shows JILA's modified AFM probes measuring DNA molecules. The older mod (long cantilever, right) eliminated the usual gold coating to enhance long-term stability. The latest version (left) retains the gold coating where needed to reflect light but maintains excellent stability. Researchers also removed a large section to reduce stiffness and friction near surfaces. The new probe provides precise results much faster than before, while reducing "noise" (colored squiggles).

Credit: Credit: Baxley/JILA

Abstract:
JILA researchers have engineered a short, flexible, reusable probe for the atomic force microscope (AFM) that enables state-of-the-art precision and stability in picoscale force measurements. Shorter, softer and more agile than standard and recently enhanced AFM probes, the JILA tips will benefit nanotechnology and studies of folding and stretching in biomolecules such as proteins and DNA.

No compromises: JILA's short, flexible, reusable AFM probe

Posted on April 9th, 2014

An AFM probe is a cantilever, shaped like a tiny diving board with a small, atomic-scale point on the free end. To measure forces at the molecular scale in a liquid, the probe attaches its tip to a molecule such as a protein and pulls; the resulting deflection of the cantilever is measured. The forces are in the realm of piconewtons, or trillionths of a newton. One newton is roughly the weight of a small apple.

The new probe design, described in ACS Nano,* is the JILA research group's third recent advance in AFM technology. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and University of Colorado Boulder.

The group previously improved AFM position stability by using laser beams to sense motion** and removing the gold coating from long probe tips, or cantilevers, to enhance long-term force stability.*** However, removing the gold reduces the strength of the signal being measured, and using long cantilevers leads to other measurement problems such as slower response to dynamic events like protein unfolding.

The latest modification overcomes these and other issues, improving precision without loss of stability, speed, or sensitivity. JILA researchers used a focused ion beam to cut a hole in the center of a short commercial cantilever and thinned the remaining support structures, thereby reducing the cantilever's stiffness and friction near surfaces. The result is excellent long-term stability and improved short-term precision, respectively, in AFM force measurements.

JILA researchers also added a protective glass cap over the gold coating at the end of the cantilever to retain beneficial reflectivity, and then removed the remaining gold to gain force stability. The modified cantilever enables rapid, precise and stable force measurements across a broad range of operating frequencies.

"Previously, we had to average the Brownian (random) motion of our favorite cantilever for about 60 milliseconds to get a measurement that had a precision of 1 piconewton," JILA/NIST biophysicist Tom Perkins says. "Now, we can get the same precision in 1 millisecond or so."

JILA researchers demonstrated significant benefits for single molecule studies. For instance, the short, soft cantilevers can quickly measure abrupt changes in force when a protein unfolds. Protein folding is required for proper biological function and misfolding can lead to diseases such as Alzheimer's. The new cantilevers match the response of stiffer, unmodified cantilevers but with greater stability and precision. Force stability is crucial in this application because protein folding and unfolding rates are exponentially sensitive to tiny changes (smaller than 1 piconewton) in applied load. The new device also can track fleeting nanoscale events, including protein folding, over hundreds of seconds—much longer periods than previously possible. The new design should also be applicable to rapid probing of the mechanical properties of materials at the nanoscale.

Significantly, the new cantilevers are robust enough to be reused for multiple days. Moreover, JILA researchers say the new design is simple and inexpensive to make, and thus, suitable for routine use.

"Amazingly, this project was spearheaded by a talented undergraduate. We hope other groups with similarly talented students will adopt these cantilevers. We certainly are," Perkins said.

###

The research was supported by the National Science Foundation and NIST.

*M.S. Bull, R.M.A. Sullan, H. Li and T.T. Perkins. Improved single-molecule force spectroscopy using micromachined cantilevers. ACS Nano. Published online March 26,2014. DOI:10.1021/nn5010588

####

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

**See 2009 NIST Tech Beat article, "Making a Point: Picoscale Stability in a Room-Temperature AFM," at:

***See 2012 NIST Tech Beat article "Not-So-Precious: Stripping Gold From AFM Probes Allows Better Measurement of Picoscale Forces,"at:

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Laboratories

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Tools

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Nanobiotechnology

Chemical cages: New technique advances synthetic biology February 10th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic