Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > TMC13 Deposition Rate Controller now supports Multi-Crystal sensors

Support for multi-crystal sensors
Support for multi-crystal sensors

Abstract:
The latest TMC13 Deposition Rate Controller from Henniker Scientific is further extended with 0.01Hz frequency resolution and support for multi-crystal sensors with each crystal being controlled individually.

TMC13 Deposition Rate Controller now supports Multi-Crystal sensors

Warrington, UK | Posted on April 8th, 2014

It is a versatile, multi-channel device that has been designed for repeatebale, reliable and accurate control of film thickness and rate in vacuum based thin film deposition processes.

The feature-rich touch-screen interface can be easily customised to suit a particular operator preference and can be operated in both automatic and manual modes, providing a direct display and control of film thickness, deposition rate and frequency value for up to 6 independent deposition sources.

The device also includes shutter relays for each channel, two analogue inputs for connection of pressure gauges, and two re-transmission analogue outputs as standard, as well as an extensive and fully editable materials library.

####

For more information, please click here

Contacts:
Henniker Scientific Ltd
Unit B3, Trident Business Park Daten Avenue
Warrington WA3 6AX
England
Tel: +44 (0) 1925 830771
Fax: +44 (0) 1925 800035

Copyright © Henniker Scientific Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Tools

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic