Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Fighting cancer with lasers and nanoballoons that pop

Abstract:
Chemotherapeutic drugs excel at fighting cancer, but they're not so efficient at getting where they need to go.

Fighting cancer with lasers and nanoballoons that pop

Buffalo, NY | Posted on April 3rd, 2014

They often interact with blood, bone marrow and other healthy bodily systems. This dilutes the drugs and causes unwanted side effects.

Now, researchers are developing a better delivery method by encapsulating the drugs in nanoballoons - which are tiny modified liposomes that, upon being struck by a red laser, pop open and deliver concentrated doses of medicine.

Described April 3 in the journal Nature Communications, the innovation could improve cancer treatment, reduce its side effects and boost research about the disease, which annually kills millions of people worldwide.

"Why PoP-liposomes, or nanoballoons, open in response to an otherwise harmless red laser is still a bit of a mystery to us, but we have definitely unearthed a new and unique phenomenon," said corresponding author Jonathan Lovell, PhD, UB assistant professor of biomedical engineering. "Its potential for improving how we treat cancer is immense."

Additional authors include students and a research technician at UB, as well as collaborators from the University at Albany; Roswell Park Cancer Institute in Buffalo; and the University of Waterloo and McMaster University, both in Ontario, Canada.

Roughly 1,000 times thinner than human hair, nanoballoons consist of porphyrin, an organic compound, and phospholipid, a fat similar to vegetable oil. Like conventional chemotherapy, they would be delivered to patients intravenously.

But because the nanoballoons encapsulate the anti-cancer drugs, they diminish the drugs' interaction with healthy bodily systems.

In laboratory experiments performed with mice, Lovell hits the nanoballoon with a red laser at the target site in the body. The laser triggers the nanoballoons to pop open and release the drugs. As soon as the laser is turned off, the nanoballoons close, taking in proteins and molecules that might induce cancer growth. Doctors could then be able to retrieve the nanoballoons by drawing blood or taking a biopsy.

Thus, the nanotechnology could provide a "chemical snapshot" of the tumor's environment, which otherwise is very difficult to assess.

"Think of it this way," Lovell said. "The nanoballoon is a submarine. The drug is the cargo. We use a laser to open the submarine door which releases the drug. We close the door by turning the laser off. We then retrieve the submarine as it circulates through the bloodstream."

Lovell will continue fundamental studies to better understand why the treatment works so well in destroying tumors in mice, and to optimize the process. Human trials could start within five years, he said.

###

The work is supported by the National Institutes of Health, which last year awarded Lovell grants from the National Institute of Biomedical Imaging and Bioengineering, as well as its Early Independence Award program, which funds high-risk, high-reward research.

####

For more information, please click here

Contacts:
Cory Nealon

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Photonics/Optics/Lasers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE