Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NanoMend Develop Pilot Scale Ultra Barrier Defect Detection Tool

Abstract:
As part of the FP7 NanoMend project, The Centre for Process Innovation (CPI), IBS Precision Engineering and The University of Huddersfield have been working together to design and manufacture a state‐of‐the‐art Wavelength Scanning Interferometer system that enables the fast surface measurement of low contrast defects at pre‐industrial scale. The tool will be installed at CPI's National Printable Electronics Centre in June 2014.

NanoMend Develop Pilot Scale Ultra Barrier Defect Detection Tool

Wilton, UK | Posted on February 28th, 2014

Current industry standard interferometry systems generally work by mechanically scanning the position of a lens relative to the substrate being measured. Such a technique is too slow to perform the large number of measurements required to enable defect detection analysis for large‐scale ultra barrier films. The solution to this is to use wave length scanning, which is able to produce a quantitative measurement of the film layer topographies in the form of a three dimensional image. Analysis of thin film defects with interferometry can provide richer information on the nature of the defect, so its significance may be assessed.

The Wavelength Scanning Interferometer developed by the NanoMend consortium analyses defects by using 3D technology and is able to perform at the speed required for ultra barrier films at proof of concept scale.

The Wavelength Scanning Interferometer has been designed to make 3D measurements without mechanical movement of the optics, by varying the wavelength of the light source in an interferometer setup. The aim is to produce a full 3D measurement and analysis of a lateral stripe of the surface of a web in a matter of seconds. An assessment of a larger area of the web surface can be built up from a series of these stripes. The technique has been invented and proven at laboratory scale at The University of Huddersfield and the installation at CPI provides the infrastructure to scale up the technology to provide proof of concept data on roll‐to‐roll manufacturing processes for high performance ultra barrier. The Wavelength Scanning Interferometer instrument will be retrofitted to an existing web handling tool at CPI, with a technology roadmap devised to advance the development towards wider industrial applications in thin film quality assurance.

The NanoMend project is a pan‐European collaborative, end user led project aimed at pioneering novel technologies for in‐line detection, cleaning and repair of micro and nano scale defects on thin films deposited on large area substrates. The consortium includes a mix of industrial and academic partners and has received 7.25 Million of funding from the EU FP7 Programme.

####

About NanoMend
NanoMend is a collaborative, end user led project aimed at pioneering novel technologies for in-line detection, cleaning and repair of micro and nano scale defects on thin films deposited on large area substrates. The aim is to integrate these technologies into systems that work at speeds required for continuous production, thus enabling the new technologies to improve product yield and performance, while keeping manufacturing costs low.

For more information, please click here

Contacts:
CPI Head Office
Wilton Centre
Wilton, Redcar, Cleveland
United Kingdom, TS10 4RF T
el: +44 (0)1642 455 340
Fax: +44 (0)1642 447 298 |

Copyright © NanoMend

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Videos/Movies

ANU invention to inspire new night-vision specs December 7th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Tools

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project