Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NanoMend Develop Pilot Scale Ultra Barrier Defect Detection Tool

Abstract:
As part of the FP7 NanoMend project, The Centre for Process Innovation (CPI), IBS Precision Engineering and The University of Huddersfield have been working together to design and manufacture a state‐of‐the‐art Wavelength Scanning Interferometer system that enables the fast surface measurement of low contrast defects at pre‐industrial scale. The tool will be installed at CPI's National Printable Electronics Centre in June 2014.

NanoMend Develop Pilot Scale Ultra Barrier Defect Detection Tool

Wilton, UK | Posted on February 28th, 2014

Current industry standard interferometry systems generally work by mechanically scanning the position of a lens relative to the substrate being measured. Such a technique is too slow to perform the large number of measurements required to enable defect detection analysis for large‐scale ultra barrier films. The solution to this is to use wave length scanning, which is able to produce a quantitative measurement of the film layer topographies in the form of a three dimensional image. Analysis of thin film defects with interferometry can provide richer information on the nature of the defect, so its significance may be assessed.

The Wavelength Scanning Interferometer developed by the NanoMend consortium analyses defects by using 3D technology and is able to perform at the speed required for ultra barrier films at proof of concept scale.

The Wavelength Scanning Interferometer has been designed to make 3D measurements without mechanical movement of the optics, by varying the wavelength of the light source in an interferometer setup. The aim is to produce a full 3D measurement and analysis of a lateral stripe of the surface of a web in a matter of seconds. An assessment of a larger area of the web surface can be built up from a series of these stripes. The technique has been invented and proven at laboratory scale at The University of Huddersfield and the installation at CPI provides the infrastructure to scale up the technology to provide proof of concept data on roll‐to‐roll manufacturing processes for high performance ultra barrier. The Wavelength Scanning Interferometer instrument will be retrofitted to an existing web handling tool at CPI, with a technology roadmap devised to advance the development towards wider industrial applications in thin film quality assurance.

The NanoMend project is a pan‐European collaborative, end user led project aimed at pioneering novel technologies for in‐line detection, cleaning and repair of micro and nano scale defects on thin films deposited on large area substrates. The consortium includes a mix of industrial and academic partners and has received 7.25 Million of funding from the EU FP7 Programme.

####

About NanoMend
NanoMend is a collaborative, end user led project aimed at pioneering novel technologies for in-line detection, cleaning and repair of micro and nano scale defects on thin films deposited on large area substrates. The aim is to integrate these technologies into systems that work at speeds required for continuous production, thus enabling the new technologies to improve product yield and performance, while keeping manufacturing costs low.

For more information, please click here

Contacts:
CPI Head Office
Wilton Centre
Wilton, Redcar, Cleveland
United Kingdom, TS10 4RF T
el: +44 (0)1642 455 340
Fax: +44 (0)1642 447 298 |

Copyright © NanoMend

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Videos/Movies

Graphene under pressure August 26th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic