Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Superabsorbing Design May Lower Manufacturing Cost of Thin Film Solar Cells

Diagram of the new design.
Diagram of the new design.

Abstract:
"Semiconductor Solar Superabsorbers"

Authors: Yiling Yu, Lujun Huang, and Linyou Cao, North Carolina State University

Published: Feb. 17, 2014, Scientific Reports

DOI: 10.1038/srep04107

Abstract: Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques.

Superabsorbing Design May Lower Manufacturing Cost of Thin Film Solar Cells

Raleigh, NC | Posted on February 26th, 2014

Researchers from North Carolina State University have developed a "superabsorbing" design that may significantly improve the light absorption efficiency of thin film solar cells and drive down manufacturing costs.

The superabsorbing design could decrease the thickness of the semiconductor materials used in thin film solar cells by more than one order of magnitude without compromising the capability of solar light absorption.

Diagram of the new design. Click to enlarge.

"State-of-the-art thin film solar cells require an amorphous silicon layer that is about 100 nanometers (nm) thick to capture the majority of the available solar energy," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work. "The structure we're proposing can absorb 90 percent of available solar energy using only a 10 nm thick layer of amorphous silicon.

"The same is true for other materials. For example, you need a cadmium telluride layer that is one micrometer thick to absorb solar energy, but our design can achieve the same results with a 50 nm thick layer of cadmium telluride. Our design can also enable a 30 nm thick layer of copper indium gallium selenide to fully absorb solar light. That's a huge advance."

Cao notes that the deposition of semiconductor materials stands as a major bottleneck for improving manufacturing productivity and lowering the cost of thin film solar cells. "A decrease in the thickness of semiconductor materials by one order of magnitude would mean a substantial improvement in manufacturing productivity and reduction in cost," Cao says, because the cells would use less material and the thin films could be deposited more quickly.

In cross-section, the new design looks like a rectangular onion. The light-absorbing semiconductor material coats a rectangular core. The semiconductor, in turn, is coated by three layers of anti-reflective coating that do not absorb light.

To develop the design, the researchers began by examining the maximum light absorption efficiency of semiconductor materials using light-trapping techniques. They found that maximizing solar absorption requires a design in which the light-trapping efficiency for solar light is equal to the intrinsic absorption efficiency of the semiconductor materials. In other words, in order to maximize solar absorption, you need to match the amount of solar light trapped inside the structure and the amount of solar light that could be absorbed. The researchers then designed the onion-like structures to match their light-trapping efficiency with the absorption efficiency of the semiconductor materials in thin film solar cells.

"We first theoretically predicted the maximum solar light absorption efficiency in given semiconductor materials, and then proposed a design that could be readily fabricated to achieve the predicted maximum. We developed a new model to do this work, because we felt that existing models were not able to find the upper limit for the solar absorption of real semiconductor materials," Cao says "And if this works the way we think it will, it would fundamentally solve light-absorption efficiency problems for thin film solar cells.

"The superabsorbing structure is designed for the convenience of fabrication, and we are looking for partners to produce and test this design," Cao adds. "The structure should be very easy to produce with standard thin film deposition and nanolithography techniques. We are happy to work with industry partners to implement this design in the production of next-generation solar cells."

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Linyou Cao
919.515.5407

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Semiconductor Solar Superabsorbers,” was published Feb. 17 in the journal Scientific Reports. Lead author of the paper is Yiling Yu, a Ph.D. student at NC State. The paper was co-authored by NC State Ph.D. student Lujun Huang:

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Thin films

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated: Controlling nano surface roughness of porous silicon March 20th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Discoveries

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Energy

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Double perovskites in environmentally friendly solar cells: Long electron-hole diffusion length in high-quality lead-free double perovskite films April 6th, 2018

Industrial

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

GLOBALFOUNDRIES Strengthens 22FDX® eMRAM Platform with eVaderis’ Ultra-low Power MCU Reference Design: Co-developed technology solution enables significant power and die size reductions for IoT and wearable products February 27th, 2018

Solar/Photovoltaic

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project