Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How to create selective holes in graphene: New technique developed at MIT produces highly selective filter materials, could lead to more efficient desalination

 The MIT researchers used a four-step process to create filters from graphene (shown here): (a) a one-atom-thick sheet of graphene is placed on a supporting structure; (b) the graphene is bombarded with gallium ions; (c) wherever the gallium ions strike the graphene, they create defects in its structure; and (d) when etched with an oxidizing solution, each of those defects grows into a hole in the graphene sheet. The longer the material stays in the oxidizing bath, the larger the holes get.
Image courtesy of the researchers
The MIT researchers used a four-step process to create filters from graphene (shown here): (a) a one-atom-thick sheet of graphene is placed on a supporting structure; (b) the graphene is bombarded with gallium ions; (c) wherever the gallium ions strike the graphene, they create defects in its structure; and (d) when etched with an oxidizing solution, each of those defects grows into a hole in the graphene sheet. The longer the material stays in the oxidizing bath, the larger the holes get.

Image courtesy of the researchers

Abstract:
Researchers have devised a way of making tiny holes of controllable size in sheets of graphene, a development that could lead to ultrathin filters for improved desalination or water purification.

How to create selective holes in graphene: New technique developed at MIT produces highly selective filter materials, could lead to more efficient desalination

Cambridge, MA | Posted on February 25th, 2014

The team of researchers at MIT, Oak Ridge National Laboratory, and in Saudi Arabia succeeded in creating subnanoscale pores in a sheet of the one-atom-thick material, which is one of the strongest materials known. Their findings are published in the journal Nano Letters.

The concept of using graphene, perforated by nanoscale pores, as a filter in desalination has been proposed and analyzed by other MIT researchers. The new work, led by graduate student Sean O'Hern and associate professor of mechanical engineering Rohit Karnik, is the first step toward actual production of such a graphene filter.

Making these minuscule holes in graphene — a hexagonal array of carbon atoms, like atomic-scale chicken wire — occurs in a two-stage process. First, the graphene is bombarded with gallium ions, which disrupt the carbon bonds. Then, the graphene is etched with an oxidizing solution that reacts strongly with the disrupted bonds — producing a hole at each spot where the gallium ions struck. By controlling how long the graphene sheet is left in the oxidizing solution, the MIT researchers can control the average size of the pores.

A big limitation in existing nanofiltration and reverse-osmosis desalination plants, which use filters to separate salt from seawater, is their low permeability: Water flows very slowly through them. The graphene filters, being much thinner, yet very strong, can sustain a much higher flow. "We've developed the first membrane that consists of a high density of subnanometer-scale pores in an atomically thin, single sheet of graphene," O'Hern says.

For efficient desalination, a membrane must demonstrate "a high rejection rate of salt, yet a high flow rate of water," he adds. One way of doing that is decreasing the membrane's thickness, but this quickly renders conventional polymer-based membranes too weak to sustain the water pressure, or too ineffective at rejecting salt, he explains.

With graphene membranes, it becomes simply a matter of controlling the size of the pores, making them "larger than water molecules, but smaller than everything else," O'Hern says — whether salt, impurities, or particular kinds of biochemical molecules.

The permeability of such graphene filters, according to computer simulations, could be 50 times greater than that of conventional membranes, as demonstrated earlier by a team of MIT researchers led by graduate student David Cohen-Tanugi of the Department of Materials Science and Engineering. But producing such filters with controlled pore sizes has remained a challenge. The new work, O'Hern says, demonstrates a method for actually producing such material with dense concentrations of nanometer-scale holes over large areas.

"We bombard the graphene with gallium ions at high energy," O'Hern says. "That creates defects in the graphene structure, and these defects are more chemically reactive." When the material is bathed in a reactive oxidant solution, the oxidant "preferentially attacks the defects," and etches away many holes of roughly similar size. O'Hern and his co-authors were able to produce a membrane with 5 trillion pores per square centimeter, well suited to use for filtration. "To better understand how small and dense these graphene pores are, if our graphene membrane were to be magnified about a million times, the pores would be less than 1 millimeter in size, spaced about 4 millimeters apart, and span over 38 square miles, an area roughly half the size of Boston," O'Hern says.

With this technique, the researchers were able to control the filtration properties of a single, centimeter-sized sheet of graphene: Without etching, no salt flowed through the defects formed by gallium ions. With just a little etching, the membranes started allowing positive salt ions to flow through. With further etching, the membranes allowed both positive and negative salt ions to flow through, but blocked the flow of larger organic molecules. With even more etching, the pores were large enough to allow everything to go through.

Scaling up the process to produce useful sheets of the permeable graphene, while maintaining control over the pore sizes, will require further research, O'Hern says.

Karnik says that such membranes, depending on their pore size, could find various applications. Desalination and nanofiltration may be the most demanding, since the membranes required for these plants would be very large. But for other purposes, such as selective filtration of molecules — for example, removal of unreacted reagents from DNA — even the very small filters produced so far might be useful.

"For biofiltration, size or cost are not as critical," Karnik says. "For those applications, the current scale is suitable."

The work also included Jing Kong, the ITT Career Development Associate Professor of Electrical Engineering; MIT graduate students Michael Boutilier and Yi Song; researcher Juan-Carlos Idrobo of the Oak Ridge National Laboratory; and professors Tahar Laoui and Muataz Atieh of the King Fahd University of Petroleum and Minerals (KFUPM). The project received support from the Center for Clean Water and Clean Energy at MIT and KFUPM and the U.S. Department of Energy.

###

Written by David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
Abby Abazorius
MIT News Office

617.253.2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Graphene

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Materials/Metamaterials

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Water

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Produced Water Absorbents, Inc. July 9th, 2014

LED Lamps Implemented in Removal of Pollutants from Water by Using Nanocatalysts July 1st, 2014

New particle-sorting method breaks speed records: Discovery could lead to new ways of detecting cancer cells or purifying contaminated water July 1st, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE