Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How to create selective holes in graphene: New technique developed at MIT produces highly selective filter materials, could lead to more efficient desalination

 The MIT researchers used a four-step process to create filters from graphene (shown here): (a) a one-atom-thick sheet of graphene is placed on a supporting structure; (b) the graphene is bombarded with gallium ions; (c) wherever the gallium ions strike the graphene, they create defects in its structure; and (d) when etched with an oxidizing solution, each of those defects grows into a hole in the graphene sheet. The longer the material stays in the oxidizing bath, the larger the holes get.
Image courtesy of the researchers
The MIT researchers used a four-step process to create filters from graphene (shown here): (a) a one-atom-thick sheet of graphene is placed on a supporting structure; (b) the graphene is bombarded with gallium ions; (c) wherever the gallium ions strike the graphene, they create defects in its structure; and (d) when etched with an oxidizing solution, each of those defects grows into a hole in the graphene sheet. The longer the material stays in the oxidizing bath, the larger the holes get.

Image courtesy of the researchers

Abstract:
Researchers have devised a way of making tiny holes of controllable size in sheets of graphene, a development that could lead to ultrathin filters for improved desalination or water purification.

How to create selective holes in graphene: New technique developed at MIT produces highly selective filter materials, could lead to more efficient desalination

Cambridge, MA | Posted on February 25th, 2014

The team of researchers at MIT, Oak Ridge National Laboratory, and in Saudi Arabia succeeded in creating subnanoscale pores in a sheet of the one-atom-thick material, which is one of the strongest materials known. Their findings are published in the journal Nano Letters.

The concept of using graphene, perforated by nanoscale pores, as a filter in desalination has been proposed and analyzed by other MIT researchers. The new work, led by graduate student Sean O'Hern and associate professor of mechanical engineering Rohit Karnik, is the first step toward actual production of such a graphene filter.

Making these minuscule holes in graphene — a hexagonal array of carbon atoms, like atomic-scale chicken wire — occurs in a two-stage process. First, the graphene is bombarded with gallium ions, which disrupt the carbon bonds. Then, the graphene is etched with an oxidizing solution that reacts strongly with the disrupted bonds — producing a hole at each spot where the gallium ions struck. By controlling how long the graphene sheet is left in the oxidizing solution, the MIT researchers can control the average size of the pores.

A big limitation in existing nanofiltration and reverse-osmosis desalination plants, which use filters to separate salt from seawater, is their low permeability: Water flows very slowly through them. The graphene filters, being much thinner, yet very strong, can sustain a much higher flow. "We've developed the first membrane that consists of a high density of subnanometer-scale pores in an atomically thin, single sheet of graphene," O'Hern says.

For efficient desalination, a membrane must demonstrate "a high rejection rate of salt, yet a high flow rate of water," he adds. One way of doing that is decreasing the membrane's thickness, but this quickly renders conventional polymer-based membranes too weak to sustain the water pressure, or too ineffective at rejecting salt, he explains.

With graphene membranes, it becomes simply a matter of controlling the size of the pores, making them "larger than water molecules, but smaller than everything else," O'Hern says — whether salt, impurities, or particular kinds of biochemical molecules.

The permeability of such graphene filters, according to computer simulations, could be 50 times greater than that of conventional membranes, as demonstrated earlier by a team of MIT researchers led by graduate student David Cohen-Tanugi of the Department of Materials Science and Engineering. But producing such filters with controlled pore sizes has remained a challenge. The new work, O'Hern says, demonstrates a method for actually producing such material with dense concentrations of nanometer-scale holes over large areas.

"We bombard the graphene with gallium ions at high energy," O'Hern says. "That creates defects in the graphene structure, and these defects are more chemically reactive." When the material is bathed in a reactive oxidant solution, the oxidant "preferentially attacks the defects," and etches away many holes of roughly similar size. O'Hern and his co-authors were able to produce a membrane with 5 trillion pores per square centimeter, well suited to use for filtration. "To better understand how small and dense these graphene pores are, if our graphene membrane were to be magnified about a million times, the pores would be less than 1 millimeter in size, spaced about 4 millimeters apart, and span over 38 square miles, an area roughly half the size of Boston," O'Hern says.

With this technique, the researchers were able to control the filtration properties of a single, centimeter-sized sheet of graphene: Without etching, no salt flowed through the defects formed by gallium ions. With just a little etching, the membranes started allowing positive salt ions to flow through. With further etching, the membranes allowed both positive and negative salt ions to flow through, but blocked the flow of larger organic molecules. With even more etching, the pores were large enough to allow everything to go through.

Scaling up the process to produce useful sheets of the permeable graphene, while maintaining control over the pore sizes, will require further research, O'Hern says.

Karnik says that such membranes, depending on their pore size, could find various applications. Desalination and nanofiltration may be the most demanding, since the membranes required for these plants would be very large. But for other purposes, such as selective filtration of molecules — for example, removal of unreacted reagents from DNA — even the very small filters produced so far might be useful.

"For biofiltration, size or cost are not as critical," Karnik says. "For those applications, the current scale is suitable."

The work also included Jing Kong, the ITT Career Development Associate Professor of Electrical Engineering; MIT graduate students Michael Boutilier and Yi Song; researcher Juan-Carlos Idrobo of the Oak Ridge National Laboratory; and professors Tahar Laoui and Muataz Atieh of the King Fahd University of Petroleum and Minerals (KFUPM). The project received support from the Center for Clean Water and Clean Energy at MIT and KFUPM and the U.S. Department of Energy.

###

Written by David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
Abby Abazorius
MIT News Office

617.253.2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Laboratories

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Graphene

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Making robots more human April 29th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Research seeks alternatives for reducing bacteria in fresh produce using nanoengineering April 29th, 2015

Discoveries

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

Materials/Metamaterials

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

Announcements

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

FEI Company: Strong Growth Prospects Remain May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

Water

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Iranian Scientists Produce Magnetic Recyclable Photocatalyst to Purify Polluted Water April 8th, 2015

Research partnerships

Electron chirp: Cyclotron radiation from single electrons measured directly for first time: Method has potential to measure neutrino mass and look beyond the Standard Model of the universe April 29th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project