Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists Use Nanotubes to Boost Fracture Toughness of Zirconia-Based Ceramic

Abstract:
Researchers from Iran University of Science and Technology in association with scientists from EPFL University, Switzerland, and Stockholm University, Sweden, tripled the fracture toughness in zirconia-based ceramic structures by using carbon nanotubes.

Scientists Use Nanotubes to Boost Fracture Toughness of Zirconia-Based Ceramic

Tehran, Iran | Posted on February 23rd, 2014

The ceramic, having appropriate distribution of carbon nanotubes on a zirconia base and possessing highly desirable mechanical properties, has various applications in advanced industries, including aerospace, electronics, and medical engineering.

Mahdiyar Taheri, M.Sc. in materials engineering and metallurgy in Iran University of Science and Technology, elaborated on different stages of the research, and said, "Carbon nanotubes were firstly distributed in a ceramic bed by using Turbula mixer, and the samples were baked through the new method of spark plasma sintering (SPS). The produced samples were next characterized by using SEM and TEM devices. After the baking process at various temperatures, mechanical properties were evaluated at room temperature (determination of fracture toughness through cone penetration method) and at high temperature (through mechanical spectrometry method)."

Results confirmed the appropriate distribution of carbon nanotubes in zirconia matrix at high volume ratio at dry environment. Among other important results obtained by the researchers, mention can be made of significant improvement in fracture toughness due to the simultaneous effect of the presence of carbon nanotubes in the base and increasing the size of particles in the stabilized zirconia bed, modification in high temperature properties of the compound, and appropriate cooking of the bodies.

The production of ceramic bodies through the method proposed in this research, which has useful characteristics, including thermal and electrical properties and biocompatibility, may resolve the problems in the use of ceramic implants and thermal devices used in various industries.

Results of the research have been published in Ceramics International, vol. 40, issue 2, March 2014, pp. 3347-3352.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Materials/Metamaterials

Flexible Metamaterial Absorbers July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE