Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Stretchable Highway for Light

Abstract:
For futuristic applications like wearable body sensors and robotic skin, researchers need to ferry information along flexible routes. Electronics that bend and stretch have become possible in recent years, but similar work in the field of optics - communicating with light instead of electrons - has lagged behind. Particularly difficult to engineer have been optics that stretch, lengthening when someone wearing body sensors bends to tie their shoe, or when a robotic arm twists through a full range of motion.

A Stretchable Highway for Light

Gent, Belgium | Posted on February 20th, 2014

Now a team of Belgian researchers (Ghent University) reports progress on this front with what may be the first optical circuit that uses interconnections that are not only bendable, but also stretchable. These new interconnections, made of a rubbery transparent material called PDMS (poly-dimethylsiloxane), guide light along their path even when stretched up to 30% and when bent around an object the diameter of a human finger.

Furthermore, by integrating these stretchy interconnections into a circuit - with a light source on one end and a detector on the other - the researchers created a miniature stretchable, bendable "link" that could be incorporated into optical communications systems. The team describes its work in a paper published today in The Optical Society's (OSA) open-access journal Optics Express.

"To our knowledge, this is indeed the first truly bendable, stretchable optical link with these miniature dimensions," said lead author Jeroen Missinne of Ghent University and imec, a micro- and nano-electronics research center, in Belgium.

Previously, researchers had created optical interconnections - also called lightguides or waveguides - from other similar rubbery materials. But until now, the researchers say, no one had discovered a way to enable these materials to carry light while stretched. Past efforts also included embedding waveguides made of semi-rigid glass fibers into a stretchable substance. In the new method, the stretchable substance itself is the waveguide.

The new connector consists of two materials, both made of PDMS: a transparent core through which the light travels, surrounded by another transparent layer of PDMS with a lower refractive index, a characteristic of the material that describes how light moves through it. This configuration traps light in the guide's core, causing it to propagate along its length.

Bending a waveguide beyond a certain point causes some of the light trapped in the core to escape, a process called optical loss. The Belgian team tested how far they could bend and stretch their new optical connector before too much light escaped.

"We were surprised that stretching had so little influence on the waveguides and also that their mechanical performance was so good," Missinne said. The guide's reliability was also "remarkable," he said. The researchers did not see a degradation in the material even after mechanically stretching it to a 10 percent elongation 80,000 times.

But, Missinne said, "waveguides are useless if you cannot launch light into them and collect light on the other end. If you want to obtain a truly stretchable optical link, the light sources and detectors need to be integrated together with the stretchable waveguide." In this case, a VCSEL (vertical-cavity surface-emitting laser), commonly used for fiber optic communications, served as the light source, and a photodiode was the detector. This configuration allowed the team to create the first truly stretchable optical interconnector.

Future uses for the new optical link might include building networks of wearable body sensors, moving machine parts such as robotic limbs, and deformable consumer electronics. Meanwhile, the team plans to make their waveguide smaller, down from 50 micrometers to just a few micrometers in diameter, which will also require a redesign of the parts of the waveguide where light enters and exits.

This work has been performed at the Centre for Microsystems Technology (CMST), a laboratory associated with imec and Ghent University.

Full bibliographic information

"Stretchable optical waveguides," Missinne et al., Optics Express, Vol. 22, Issue 4 pp. 4168-4179 (2014).

####

About Ghent University
Ghent University, abbreviated to UGent, is one of the major universities in the Dutch-speaking region of Europe. It distinguishes itself as a socially committed and pluralistic university in a broad international perspective.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at www.OpticsInfoBase.org/OE.

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in optics and photonics. For more information, visit www.osa.org.

For more information, please click here

Contacts:
Frederik Leys
Ghent University
Centre for advanced polymer based microsystems and applications
+32 478 98 21 31

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Flexible Electronics

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Chemists Fabricate Novel Rewritable Paper: An attractive alternate to regular paper, UC Riverside-developed technology helps address increasing problems in environment and resource sustainability December 2nd, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Discoveries

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE