Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clemson researchers develop sticky nanoparticles to fight heart disease

Abstract:
Clemson University researchers have developed nanoparticles that can deliver drugs targeting damaged arteries, a non-invasive method to fight heart disease.

Clemson researchers develop sticky nanoparticles to fight heart disease

Clemson, SC | Posted on February 19th, 2014

Heart disease is the leading cause of death in the U.S., according to the Centers for Disease Control and Prevention. One of the standard ways to treat clogged and damaged arteries currently is to implant vascular stents, which hold the vessels open and release such drugs as paclitaxel.

The researchers, led by Clemson bioengineering professor Naren Vyavahare, hope their advanced nanoparticles could be used alongside stents or in lieu of them.

"Healthy arteries have elastic fibers that provide elasticity. They are like rubber bands in the tissue that allow expansion and recoil during blood flow," Vyavahare said. "In most cardiovascular diseases, elastic fibers in arteries get damaged, creating hooks that can be used to target drugs."

The nanoparticles, coated with a sticky protein, latch onto damaged arteries and can deliver a drug to the site in slow release fashion. These nanoparticles can be engineered to deliver an array of drugs to the damaged or clogged artery, a common example being paclitaxel, which inhibits cell division and helps prevent growth of scar tissue that can clog arteries. These particles also have unique surfaces that allow prolonged circulation time, providing more opportunities for these particles to accumulate at the damage site.

"We developed nanoparticles that have antibodies on the surface that attach to diseased sites like Velcro," said Vyavahare. "Interestingly, these newly created nanoparticles only accumulate at the damaged artery, not in the healthy arteries, enabling site-specific drug delivery."

"These nanoparticles can be delivered intravenously to target injured areas and can administer drugs over longer periods of time, thus avoiding repeated surgical interventions at the disease site," said Aditi Sinha, a Clemson graduate student and lead author on a paper soon to be published in journal Nanomedicine: Nanotechnolgy, Biology and Medicine.

The work is a promising step toward new treatments for cardiovascular and other diseases. The research team is testing the nanoparticles to determine the most effective drug dosage for vascular tissue repair. This technology can have variety of applications in other diseases, such as chronic obstructive pulmonary disease, Marfan syndrome and elastic fiber-related disorders, such as aortic aneurysms.

####

About Clemson University
Ranked No. 21 among national public universities, Clemson University is a major, land-grant, science- and engineering-oriented research university that maintains a strong commitment to teaching and student success. Clemson is an inclusive, student-centered community characterized by high academic standards, a culture of collaboration, school spirit and a competitive drive to excel.

This material is based upon work supported by the National Institutes of Health under grant nos. R01HL070969-08, R21HL084267 and P20GM103444 and Hunter Endowment at Clemson University. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Institutes of Health.

For more information, please click here

Contacts:
Naren Vyavahare


864-656-5558
Aditi Sinha


Brian M. Mullen

864-656-2063

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Videos/Movies

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Nanomedicine

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Discoveries

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE