Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Clemson researchers develop sticky nanoparticles to fight heart disease

Abstract:
Clemson University researchers have developed nanoparticles that can deliver drugs targeting damaged arteries, a non-invasive method to fight heart disease.

Clemson researchers develop sticky nanoparticles to fight heart disease

Clemson, SC | Posted on February 19th, 2014

Heart disease is the leading cause of death in the U.S., according to the Centers for Disease Control and Prevention. One of the standard ways to treat clogged and damaged arteries currently is to implant vascular stents, which hold the vessels open and release such drugs as paclitaxel.

The researchers, led by Clemson bioengineering professor Naren Vyavahare, hope their advanced nanoparticles could be used alongside stents or in lieu of them.

"Healthy arteries have elastic fibers that provide elasticity. They are like rubber bands in the tissue that allow expansion and recoil during blood flow," Vyavahare said. "In most cardiovascular diseases, elastic fibers in arteries get damaged, creating hooks that can be used to target drugs."

The nanoparticles, coated with a sticky protein, latch onto damaged arteries and can deliver a drug to the site in slow release fashion. These nanoparticles can be engineered to deliver an array of drugs to the damaged or clogged artery, a common example being paclitaxel, which inhibits cell division and helps prevent growth of scar tissue that can clog arteries. These particles also have unique surfaces that allow prolonged circulation time, providing more opportunities for these particles to accumulate at the damage site.

"We developed nanoparticles that have antibodies on the surface that attach to diseased sites like Velcro," said Vyavahare. "Interestingly, these newly created nanoparticles only accumulate at the damaged artery, not in the healthy arteries, enabling site-specific drug delivery."

"These nanoparticles can be delivered intravenously to target injured areas and can administer drugs over longer periods of time, thus avoiding repeated surgical interventions at the disease site," said Aditi Sinha, a Clemson graduate student and lead author on a paper soon to be published in journal Nanomedicine: Nanotechnolgy, Biology and Medicine.

The work is a promising step toward new treatments for cardiovascular and other diseases. The research team is testing the nanoparticles to determine the most effective drug dosage for vascular tissue repair. This technology can have variety of applications in other diseases, such as chronic obstructive pulmonary disease, Marfan syndrome and elastic fiber-related disorders, such as aortic aneurysms.

####

About Clemson University
Ranked No. 21 among national public universities, Clemson University is a major, land-grant, science- and engineering-oriented research university that maintains a strong commitment to teaching and student success. Clemson is an inclusive, student-centered community characterized by high academic standards, a culture of collaboration, school spirit and a competitive drive to excel.

This material is based upon work supported by the National Institutes of Health under grant nos. R01HL070969-08, R21HL084267 and P20GM103444 and Hunter Endowment at Clemson University. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Institutes of Health.

For more information, please click here

Contacts:
Naren Vyavahare


864-656-5558
Aditi Sinha


Brian M. Mullen

864-656-2063

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Videos/Movies

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Quantum physicists achieve entanglement record: Largest entangled quantum register of individually controllable systems to date April 15th, 2018

Nanomedicine

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Bloodless revolution in diabetes monitoring: Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test April 10th, 2018

Discoveries

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project